![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclstop | Structured version Visualization version GIF version |
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fclstop | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isfcls 22301 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
3 | 2 | simp1bi 1138 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2081 ∀wral 3105 ∪ cuni 4745 ‘cfv 6225 (class class class)co 7016 Topctop 21185 clsccl 21310 Filcfil 22137 fClus cfcls 22228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-fbas 20224 df-fil 22138 df-fcls 22233 |
This theorem is referenced by: fclstopon 22304 fclsneii 22309 fclsfnflim 22319 flimfnfcls 22320 |
Copyright terms: Public domain | W3C validator |