MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclstop Structured version   Visualization version   GIF version

Theorem fclstop 23162
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclstop (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)

Proof of Theorem fclstop
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐽 = 𝐽
21isfcls 23160 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
32simp1bi 1144 1 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064   cuni 4839  cfv 6433  (class class class)co 7275  Topctop 22042  clsccl 22169  Filcfil 22996   fClus cfcls 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-fil 22997  df-fcls 23092
This theorem is referenced by:  fclstopon  23163  fclsneii  23168  fclsfnflim  23178  flimfnfcls  23179
  Copyright terms: Public domain W3C validator