| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclstop | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclstop | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | isfcls 23894 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4858 ‘cfv 6482 (class class class)co 7349 Topctop 22778 clsccl 22903 Filcfil 23730 fClus cfcls 23821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-fbas 21258 df-fil 23731 df-fcls 23826 |
| This theorem is referenced by: fclstopon 23897 fclsneii 23902 fclsfnflim 23912 flimfnfcls 23913 |
| Copyright terms: Public domain | W3C validator |