|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fclselbas | Structured version Visualization version GIF version | ||
| Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fclselbas.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| fclselbas | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fclselbas.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | fclsfil 24019 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | 
| 3 | fclstopon 24021 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | |
| 4 | 2, 3 | mpbird 257 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 5 | fclsopn 24023 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | |
| 6 | 4, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | 
| 7 | 6 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 8 | 7 | simpld 494 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∩ cin 3949 ∅c0 4332 ∪ cuni 4906 ‘cfv 6560 (class class class)co 7432 TopOnctopon 22917 Filcfil 23854 fClus cfcls 23945 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-fbas 21362 df-top 22901 df-topon 22918 df-cld 23028 df-ntr 23029 df-cls 23030 df-fil 23855 df-fcls 23950 | 
| This theorem is referenced by: fclsneii 24026 fclsnei 24028 fclsfnflim 24036 flimfnfcls 24037 fcfelbas 24045 cnfcf 24051 cfilfcls 25309 | 
| Copyright terms: Public domain | W3C validator |