MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclselbas Structured version   Visualization version   GIF version

Theorem fclselbas 23926
Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
fclselbas.1 𝑋 = 𝐽
Assertion
Ref Expression
fclselbas (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋)

Proof of Theorem fclselbas
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fclselbas.1 . . . . . 6 𝑋 = 𝐽
21fclsfil 23920 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋))
3 fclstopon 23922 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
42, 3mpbird 257 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ (TopOn‘𝑋))
5 fclsopn 23924 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
64, 2, 5syl2anc 584 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
76ibi 267 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
87simpld 494 1 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cin 3896  c0 4278   cuni 4854  cfv 6476  (class class class)co 7341  TopOnctopon 22820  Filcfil 23755   fClus cfcls 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-fbas 21283  df-top 22804  df-topon 22821  df-cld 22929  df-ntr 22930  df-cls 22931  df-fil 23756  df-fcls 23851
This theorem is referenced by:  fclsneii  23927  fclsnei  23929  fclsfnflim  23937  flimfnfcls  23938  fcfelbas  23946  cnfcf  23952  cfilfcls  25196
  Copyright terms: Public domain W3C validator