![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclstopon | Structured version Visualization version GIF version |
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
fclstopon | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fclstop 24035 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) | |
2 | istopon 22934 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 2 | baib 535 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
5 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
6 | 5 | fclsfil 24034 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
7 | fveq2 6907 | . . . . 5 ⊢ (𝑋 = ∪ 𝐽 → (Fil‘𝑋) = (Fil‘∪ 𝐽)) | |
8 | 7 | eleq2d 2825 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
9 | 6, 8 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = ∪ 𝐽 → 𝐹 ∈ (Fil‘𝑋))) |
10 | filunibas 23905 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘∪ 𝐽) → ∪ 𝐹 = ∪ 𝐽) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → ∪ 𝐹 = ∪ 𝐽) |
12 | filunibas 23905 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
13 | 12 | eqeq1d 2737 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽)) |
14 | 11, 13 | syl5ibcom 245 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = ∪ 𝐽)) |
15 | 9, 14 | impbid 212 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ (Fil‘𝑋))) |
16 | 4, 15 | bitrd 279 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 Topctop 22915 TopOnctopon 22932 Filcfil 23869 fClus cfcls 23960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fbas 21379 df-topon 22933 df-fil 23870 df-fcls 23965 |
This theorem is referenced by: fclsopni 24039 fclselbas 24040 fclsss1 24046 fclsss2 24047 fclscf 24049 |
Copyright terms: Public domain | W3C validator |