MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclstopon Structured version   Visualization version   GIF version

Theorem fclstopon 23875
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclstopon (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))

Proof of Theorem fclstopon
StepHypRef Expression
1 fclstop 23874 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
2 istopon 22775 . . . 4 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
32baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
5 eqid 2729 . . . . 5 𝐽 = 𝐽
65fclsfil 23873 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
7 fveq2 6840 . . . . 5 (𝑋 = 𝐽 → (Fil‘𝑋) = (Fil‘ 𝐽))
87eleq2d 2814 . . . 4 (𝑋 = 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
96, 8syl5ibrcom 247 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
10 filunibas 23744 . . . . 5 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
12 filunibas 23744 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1312eqeq1d 2731 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ( 𝐹 = 𝐽𝑋 = 𝐽))
1411, 13syl5ibcom 245 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐽))
159, 14impbid 212 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
164, 15bitrd 279 1 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   cuni 4867  cfv 6499  (class class class)co 7369  Topctop 22756  TopOnctopon 22773  Filcfil 23708   fClus cfcls 23799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21237  df-topon 22774  df-fil 23709  df-fcls 23804
This theorem is referenced by:  fclsopni  23878  fclselbas  23879  fclsss1  23885  fclsss2  23886  fclscf  23888
  Copyright terms: Public domain W3C validator