| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclstopon | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclstopon | ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclstop 23965 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) | |
| 2 | istopon 22866 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 2 | baib 535 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
| 5 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | fclsfil 23964 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 7 | fveq2 6886 | . . . . 5 ⊢ (𝑋 = ∪ 𝐽 → (Fil‘𝑋) = (Fil‘∪ 𝐽)) | |
| 8 | 7 | eleq2d 2819 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
| 9 | 6, 8 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = ∪ 𝐽 → 𝐹 ∈ (Fil‘𝑋))) |
| 10 | filunibas 23835 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘∪ 𝐽) → ∪ 𝐹 = ∪ 𝐽) | |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → ∪ 𝐹 = ∪ 𝐽) |
| 12 | filunibas 23835 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
| 13 | 12 | eqeq1d 2736 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽)) |
| 14 | 11, 13 | syl5ibcom 245 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = ∪ 𝐽)) |
| 15 | 9, 14 | impbid 212 | . 2 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ (Fil‘𝑋))) |
| 16 | 4, 15 | bitrd 279 | 1 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∪ cuni 4887 ‘cfv 6541 (class class class)co 7413 Topctop 22847 TopOnctopon 22864 Filcfil 23799 fClus cfcls 23890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-fbas 21323 df-topon 22865 df-fil 23800 df-fcls 23895 |
| This theorem is referenced by: fclsopni 23969 fclselbas 23970 fclsss1 23976 fclsss2 23977 fclscf 23979 |
| Copyright terms: Public domain | W3C validator |