MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclstopon Structured version   Visualization version   GIF version

Theorem fclstopon 23922
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclstopon (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))

Proof of Theorem fclstopon
StepHypRef Expression
1 fclstop 23921 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
2 istopon 22822 . . . 4 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
32baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
5 eqid 2731 . . . . 5 𝐽 = 𝐽
65fclsfil 23920 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
7 fveq2 6817 . . . . 5 (𝑋 = 𝐽 → (Fil‘𝑋) = (Fil‘ 𝐽))
87eleq2d 2817 . . . 4 (𝑋 = 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
96, 8syl5ibrcom 247 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
10 filunibas 23791 . . . . 5 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
12 filunibas 23791 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1312eqeq1d 2733 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ( 𝐹 = 𝐽𝑋 = 𝐽))
1411, 13syl5ibcom 245 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐽))
159, 14impbid 212 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
164, 15bitrd 279 1 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111   cuni 4854  cfv 6476  (class class class)co 7341  Topctop 22803  TopOnctopon 22820  Filcfil 23755   fClus cfcls 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-fbas 21283  df-topon 22821  df-fil 23756  df-fcls 23851
This theorem is referenced by:  fclsopni  23925  fclselbas  23926  fclsss1  23932  fclsss2  23933  fclscf  23935
  Copyright terms: Public domain W3C validator