| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalendof | Structured version Visualization version GIF version | ||
| Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalendof.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| itcovalendof.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) |
| itcovalendof.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| itcovalendof | ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalendof.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
| 3 | 2 | feq1d 6629 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴⟶𝐴)) |
| 4 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
| 5 | 4 | feq1d 6629 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴)) |
| 6 | fveq2 6817 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
| 7 | 6 | feq1d 6629 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴)) |
| 8 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁)) | |
| 9 | 8 | feq1d 6629 | . . 3 ⊢ (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴)) |
| 10 | f1oi 6797 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 11 | f1of 6759 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐴):𝐴⟶𝐴) |
| 13 | itcovalendof.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) | |
| 14 | 13 | fdmd 6657 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 15 | 14 | reseq2d 5925 | . . . . . 6 ⊢ (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴)) |
| 16 | 15 | feq1d 6629 | . . . . 5 ⊢ (𝜑 → (( I ↾ dom 𝐹):𝐴⟶𝐴 ↔ ( I ↾ 𝐴):𝐴⟶𝐴)) |
| 17 | 12, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ( I ↾ dom 𝐹):𝐴⟶𝐴) |
| 18 | itcovalendof.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 19 | 13, 18 | fexd 7156 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 20 | itcoval0 48673 | . . . . . 6 ⊢ (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| 22 | 21 | feq1d 6629 | . . . 4 ⊢ (𝜑 → (((IterComp‘𝐹)‘0):𝐴⟶𝐴 ↔ ( I ↾ dom 𝐹):𝐴⟶𝐴)) |
| 23 | 17, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → ((IterComp‘𝐹)‘0):𝐴⟶𝐴) |
| 24 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹:𝐴⟶𝐴) |
| 25 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) | |
| 26 | 24, 25 | fcod 6672 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴) |
| 27 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹 ∈ V) |
| 28 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝑦 ∈ ℕ0) | |
| 29 | eqidd 2731 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) | |
| 30 | itcovalsucov 48679 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) | |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) |
| 32 | 31 | feq1d 6629 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴)) |
| 33 | 26, 32 | mpbird 257 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴) |
| 34 | 3, 5, 7, 9, 23, 33 | nn0indd 12562 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| 35 | 1, 34 | mpdan 687 | 1 ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 I cid 5508 dom cdm 5614 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6473 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 + caddc 11001 ℕ0cn0 12373 IterCompcitco 48668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-seq 13901 df-itco 48670 |
| This theorem is referenced by: ackendofnn0 48695 ackvalsucsucval 48699 |
| Copyright terms: Public domain | W3C validator |