Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalendof Structured version   Visualization version   GIF version

Theorem itcovalendof 45721
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.)
Hypotheses
Ref Expression
itcovalendof.a (𝜑𝐴𝑉)
itcovalendof.f (𝜑𝐹:𝐴𝐴)
itcovalendof.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itcovalendof (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)

Proof of Theorem itcovalendof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcovalendof.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6738 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
32feq1d 6551 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴𝐴))
4 fveq2 6738 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
54feq1d 6551 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴𝐴))
6 fveq2 6738 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
76feq1d 6551 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴))
8 fveq2 6738 . . . 4 (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁))
98feq1d 6551 . . 3 (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴𝐴))
10 f1oi 6719 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
11 f1of 6682 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
1210, 11mp1i 13 . . . . 5 (𝜑 → ( I ↾ 𝐴):𝐴𝐴)
13 itcovalendof.f . . . . . . . 8 (𝜑𝐹:𝐴𝐴)
1413fdmd 6577 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
1514reseq2d 5868 . . . . . 6 (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴))
1615feq1d 6551 . . . . 5 (𝜑 → (( I ↾ dom 𝐹):𝐴𝐴 ↔ ( I ↾ 𝐴):𝐴𝐴))
1712, 16mpbird 260 . . . 4 (𝜑 → ( I ↾ dom 𝐹):𝐴𝐴)
18 itcovalendof.a . . . . . . 7 (𝜑𝐴𝑉)
1913, 18fexd 7064 . . . . . 6 (𝜑𝐹 ∈ V)
20 itcoval0 45714 . . . . . 6 (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2119, 20syl 17 . . . . 5 (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2221feq1d 6551 . . . 4 (𝜑 → (((IterComp‘𝐹)‘0):𝐴𝐴 ↔ ( I ↾ dom 𝐹):𝐴𝐴))
2317, 22mpbird 260 . . 3 (𝜑 → ((IterComp‘𝐹)‘0):𝐴𝐴)
2413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹:𝐴𝐴)
25 simpr 488 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴𝐴)
2624, 25fcod 6592 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴)
2719ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹 ∈ V)
28 simplr 769 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝑦 ∈ ℕ0)
29 eqidd 2740 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦))
30 itcovalsucov 45720 . . . . . 6 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3127, 28, 29, 30syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3231feq1d 6551 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴))
3326, 32mpbird 260 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴)
343, 5, 7, 9, 23, 33nn0indd 12301 . 2 ((𝜑𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
351, 34mpdan 687 1 (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3422   I cid 5470  dom cdm 5568  cres 5570  ccom 5572  wf 6396  1-1-ontowf1o 6399  cfv 6400  (class class class)co 7234  0cc0 10756  1c1 10757   + caddc 10759  0cn0 12117  IterCompcitco 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9283  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-nn 11858  df-n0 12118  df-z 12204  df-uz 12466  df-seq 13604  df-itco 45711
This theorem is referenced by:  ackendofnn0  45736  ackvalsucsucval  45740
  Copyright terms: Public domain W3C validator