Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalendof Structured version   Visualization version   GIF version

Theorem itcovalendof 48616
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.)
Hypotheses
Ref Expression
itcovalendof.a (𝜑𝐴𝑉)
itcovalendof.f (𝜑𝐹:𝐴𝐴)
itcovalendof.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itcovalendof (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)

Proof of Theorem itcovalendof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcovalendof.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6881 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
32feq1d 6695 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴𝐴))
4 fveq2 6881 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
54feq1d 6695 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴𝐴))
6 fveq2 6881 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
76feq1d 6695 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴))
8 fveq2 6881 . . . 4 (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁))
98feq1d 6695 . . 3 (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴𝐴))
10 f1oi 6861 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
11 f1of 6823 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
1210, 11mp1i 13 . . . . 5 (𝜑 → ( I ↾ 𝐴):𝐴𝐴)
13 itcovalendof.f . . . . . . . 8 (𝜑𝐹:𝐴𝐴)
1413fdmd 6721 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
1514reseq2d 5971 . . . . . 6 (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴))
1615feq1d 6695 . . . . 5 (𝜑 → (( I ↾ dom 𝐹):𝐴𝐴 ↔ ( I ↾ 𝐴):𝐴𝐴))
1712, 16mpbird 257 . . . 4 (𝜑 → ( I ↾ dom 𝐹):𝐴𝐴)
18 itcovalendof.a . . . . . . 7 (𝜑𝐴𝑉)
1913, 18fexd 7224 . . . . . 6 (𝜑𝐹 ∈ V)
20 itcoval0 48609 . . . . . 6 (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2119, 20syl 17 . . . . 5 (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2221feq1d 6695 . . . 4 (𝜑 → (((IterComp‘𝐹)‘0):𝐴𝐴 ↔ ( I ↾ dom 𝐹):𝐴𝐴))
2317, 22mpbird 257 . . 3 (𝜑 → ((IterComp‘𝐹)‘0):𝐴𝐴)
2413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹:𝐴𝐴)
25 simpr 484 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴𝐴)
2624, 25fcod 6736 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴)
2719ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹 ∈ V)
28 simplr 768 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝑦 ∈ ℕ0)
29 eqidd 2737 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦))
30 itcovalsucov 48615 . . . . . 6 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3127, 28, 29, 30syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3231feq1d 6695 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴))
3326, 32mpbird 257 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴)
343, 5, 7, 9, 23, 33nn0indd 12695 . 2 ((𝜑𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
351, 34mpdan 687 1 (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   I cid 5552  dom cdm 5659  cres 5661  ccom 5663  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  IterCompcitco 48604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-itco 48606
This theorem is referenced by:  ackendofnn0  48631  ackvalsucsucval  48635
  Copyright terms: Public domain W3C validator