Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalendof Structured version   Visualization version   GIF version

Theorem itcovalendof 45083
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.)
Hypotheses
Ref Expression
itcovalendof.a (𝜑𝐴𝑉)
itcovalendof.f (𝜑𝐹:𝐴𝐴)
itcovalendof.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itcovalendof (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)

Proof of Theorem itcovalendof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcovalendof.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6645 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
32feq1d 6472 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴𝐴))
4 fveq2 6645 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
54feq1d 6472 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴𝐴))
6 fveq2 6645 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
76feq1d 6472 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴))
8 fveq2 6645 . . . 4 (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁))
98feq1d 6472 . . 3 (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴𝐴))
10 f1oi 6627 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
11 f1of 6590 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
1210, 11mp1i 13 . . . . 5 (𝜑 → ( I ↾ 𝐴):𝐴𝐴)
13 itcovalendof.f . . . . . . . 8 (𝜑𝐹:𝐴𝐴)
1413fdmd 6497 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
1514reseq2d 5818 . . . . . 6 (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴))
1615feq1d 6472 . . . . 5 (𝜑 → (( I ↾ dom 𝐹):𝐴𝐴 ↔ ( I ↾ 𝐴):𝐴𝐴))
1712, 16mpbird 260 . . . 4 (𝜑 → ( I ↾ dom 𝐹):𝐴𝐴)
18 itcovalendof.a . . . . . . 7 (𝜑𝐴𝑉)
1913, 18fexd 6967 . . . . . 6 (𝜑𝐹 ∈ V)
20 itcoval0 45076 . . . . . 6 (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2119, 20syl 17 . . . . 5 (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2221feq1d 6472 . . . 4 (𝜑 → (((IterComp‘𝐹)‘0):𝐴𝐴 ↔ ( I ↾ dom 𝐹):𝐴𝐴))
2317, 22mpbird 260 . . 3 (𝜑 → ((IterComp‘𝐹)‘0):𝐴𝐴)
2413ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹:𝐴𝐴)
25 simpr 488 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴𝐴)
2624, 25fcod 6506 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴)
2719ad2antrr 725 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹 ∈ V)
28 simplr 768 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝑦 ∈ ℕ0)
29 eqidd 2799 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦))
30 itcovalsucov 45082 . . . . . 6 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3127, 28, 29, 30syl3anc 1368 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3231feq1d 6472 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴))
3326, 32mpbird 260 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴)
343, 5, 7, 9, 23, 33nn0indd 12067 . 2 ((𝜑𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
351, 34mpdan 686 1 (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441   I cid 5424  dom cdm 5519  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  IterCompcitco 45071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-itco 45073
This theorem is referenced by:  ackendofnn0  45098  ackvalsucsucval  45102
  Copyright terms: Public domain W3C validator