| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalendof | Structured version Visualization version GIF version | ||
| Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalendof.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| itcovalendof.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) |
| itcovalendof.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| itcovalendof | ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalendof.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | fveq2 6860 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
| 3 | 2 | feq1d 6672 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴⟶𝐴)) |
| 4 | fveq2 6860 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
| 5 | 4 | feq1d 6672 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴)) |
| 6 | fveq2 6860 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
| 7 | 6 | feq1d 6672 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴)) |
| 8 | fveq2 6860 | . . . 4 ⊢ (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁)) | |
| 9 | 8 | feq1d 6672 | . . 3 ⊢ (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴)) |
| 10 | f1oi 6840 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 11 | f1of 6802 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐴):𝐴⟶𝐴) |
| 13 | itcovalendof.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) | |
| 14 | 13 | fdmd 6700 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 15 | 14 | reseq2d 5952 | . . . . . 6 ⊢ (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴)) |
| 16 | 15 | feq1d 6672 | . . . . 5 ⊢ (𝜑 → (( I ↾ dom 𝐹):𝐴⟶𝐴 ↔ ( I ↾ 𝐴):𝐴⟶𝐴)) |
| 17 | 12, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ( I ↾ dom 𝐹):𝐴⟶𝐴) |
| 18 | itcovalendof.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 19 | 13, 18 | fexd 7203 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 20 | itcoval0 48641 | . . . . . 6 ⊢ (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| 22 | 21 | feq1d 6672 | . . . 4 ⊢ (𝜑 → (((IterComp‘𝐹)‘0):𝐴⟶𝐴 ↔ ( I ↾ dom 𝐹):𝐴⟶𝐴)) |
| 23 | 17, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → ((IterComp‘𝐹)‘0):𝐴⟶𝐴) |
| 24 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹:𝐴⟶𝐴) |
| 25 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) | |
| 26 | 24, 25 | fcod 6715 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴) |
| 27 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹 ∈ V) |
| 28 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝑦 ∈ ℕ0) | |
| 29 | eqidd 2731 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) | |
| 30 | itcovalsucov 48647 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) | |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) |
| 32 | 31 | feq1d 6672 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴)) |
| 33 | 26, 32 | mpbird 257 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴) |
| 34 | 3, 5, 7, 9, 23, 33 | nn0indd 12637 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| 35 | 1, 34 | mpdan 687 | 1 ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 I cid 5534 dom cdm 5640 ↾ cres 5642 ∘ ccom 5644 ⟶wf 6509 –1-1-onto→wf1o 6512 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 ℕ0cn0 12448 IterCompcitco 48636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-seq 13973 df-itco 48638 |
| This theorem is referenced by: ackendofnn0 48663 ackvalsucsucval 48667 |
| Copyright terms: Public domain | W3C validator |