Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalendof | Structured version Visualization version GIF version |
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
Ref | Expression |
---|---|
itcovalendof.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
itcovalendof.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) |
itcovalendof.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
itcovalendof | ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcovalendof.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | fveq2 6738 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
3 | 2 | feq1d 6551 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴⟶𝐴)) |
4 | fveq2 6738 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
5 | 4 | feq1d 6551 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴)) |
6 | fveq2 6738 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
7 | 6 | feq1d 6551 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴)) |
8 | fveq2 6738 | . . . 4 ⊢ (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁)) | |
9 | 8 | feq1d 6551 | . . 3 ⊢ (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴)) |
10 | f1oi 6719 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
11 | f1of 6682 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐴):𝐴⟶𝐴) |
13 | itcovalendof.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) | |
14 | 13 | fdmd 6577 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
15 | 14 | reseq2d 5868 | . . . . . 6 ⊢ (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴)) |
16 | 15 | feq1d 6551 | . . . . 5 ⊢ (𝜑 → (( I ↾ dom 𝐹):𝐴⟶𝐴 ↔ ( I ↾ 𝐴):𝐴⟶𝐴)) |
17 | 12, 16 | mpbird 260 | . . . 4 ⊢ (𝜑 → ( I ↾ dom 𝐹):𝐴⟶𝐴) |
18 | itcovalendof.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
19 | 13, 18 | fexd 7064 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
20 | itcoval0 45714 | . . . . . 6 ⊢ (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
22 | 21 | feq1d 6551 | . . . 4 ⊢ (𝜑 → (((IterComp‘𝐹)‘0):𝐴⟶𝐴 ↔ ( I ↾ dom 𝐹):𝐴⟶𝐴)) |
23 | 17, 22 | mpbird 260 | . . 3 ⊢ (𝜑 → ((IterComp‘𝐹)‘0):𝐴⟶𝐴) |
24 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹:𝐴⟶𝐴) |
25 | simpr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) | |
26 | 24, 25 | fcod 6592 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴) |
27 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹 ∈ V) |
28 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝑦 ∈ ℕ0) | |
29 | eqidd 2740 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) | |
30 | itcovalsucov 45720 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) | |
31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) |
32 | 31 | feq1d 6551 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴)) |
33 | 26, 32 | mpbird 260 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴) |
34 | 3, 5, 7, 9, 23, 33 | nn0indd 12301 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
35 | 1, 34 | mpdan 687 | 1 ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3422 I cid 5470 dom cdm 5568 ↾ cres 5570 ∘ ccom 5572 ⟶wf 6396 –1-1-onto→wf1o 6399 ‘cfv 6400 (class class class)co 7234 0cc0 10756 1c1 10757 + caddc 10759 ℕ0cn0 12117 IterCompcitco 45709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9283 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-n0 12118 df-z 12204 df-uz 12466 df-seq 13604 df-itco 45711 |
This theorem is referenced by: ackendofnn0 45736 ackvalsucsucval 45740 |
Copyright terms: Public domain | W3C validator |