Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalendof Structured version   Visualization version   GIF version

Theorem itcovalendof 45433
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.)
Hypotheses
Ref Expression
itcovalendof.a (𝜑𝐴𝑉)
itcovalendof.f (𝜑𝐹:𝐴𝐴)
itcovalendof.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itcovalendof (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)

Proof of Theorem itcovalendof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcovalendof.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6651 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
32feq1d 6476 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴𝐴))
4 fveq2 6651 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
54feq1d 6476 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴𝐴))
6 fveq2 6651 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
76feq1d 6476 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴))
8 fveq2 6651 . . . 4 (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁))
98feq1d 6476 . . 3 (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴𝐴))
10 f1oi 6632 . . . . . 6 ( I ↾ 𝐴):𝐴1-1-onto𝐴
11 f1of 6595 . . . . . 6 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
1210, 11mp1i 13 . . . . 5 (𝜑 → ( I ↾ 𝐴):𝐴𝐴)
13 itcovalendof.f . . . . . . . 8 (𝜑𝐹:𝐴𝐴)
1413fdmd 6501 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
1514reseq2d 5816 . . . . . 6 (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴))
1615feq1d 6476 . . . . 5 (𝜑 → (( I ↾ dom 𝐹):𝐴𝐴 ↔ ( I ↾ 𝐴):𝐴𝐴))
1712, 16mpbird 260 . . . 4 (𝜑 → ( I ↾ dom 𝐹):𝐴𝐴)
18 itcovalendof.a . . . . . . 7 (𝜑𝐴𝑉)
1913, 18fexd 6974 . . . . . 6 (𝜑𝐹 ∈ V)
20 itcoval0 45426 . . . . . 6 (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2119, 20syl 17 . . . . 5 (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
2221feq1d 6476 . . . 4 (𝜑 → (((IterComp‘𝐹)‘0):𝐴𝐴 ↔ ( I ↾ dom 𝐹):𝐴𝐴))
2317, 22mpbird 260 . . 3 (𝜑 → ((IterComp‘𝐹)‘0):𝐴𝐴)
2413ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹:𝐴𝐴)
25 simpr 489 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴𝐴)
2624, 25fcod 6510 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴)
2719ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝐹 ∈ V)
28 simplr 769 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → 𝑦 ∈ ℕ0)
29 eqidd 2760 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦))
30 itcovalsucov 45432 . . . . . 6 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3127, 28, 29, 30syl3anc 1369 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)))
3231feq1d 6476 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴𝐴))
3326, 32mpbird 260 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴𝐴)
343, 5, 7, 9, 23, 33nn0indd 12103 . 2 ((𝜑𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
351, 34mpdan 687 1 (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407   I cid 5422  dom cdm 5517  cres 5519  ccom 5521  wf 6324  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563  0cn0 11919  IterCompcitco 45421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423
This theorem is referenced by:  ackendofnn0  45448  ackvalsucsucval  45452
  Copyright terms: Public domain W3C validator