| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalendof | Structured version Visualization version GIF version | ||
| Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalendof.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| itcovalendof.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) |
| itcovalendof.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| itcovalendof | ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalendof.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
| 3 | 2 | feq1d 6639 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴⟶𝐴)) |
| 4 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
| 5 | 4 | feq1d 6639 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴)) |
| 6 | fveq2 6828 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
| 7 | 6 | feq1d 6639 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴)) |
| 8 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁)) | |
| 9 | 8 | feq1d 6639 | . . 3 ⊢ (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴)) |
| 10 | f1oi 6807 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 11 | f1of 6769 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐴):𝐴⟶𝐴) |
| 13 | itcovalendof.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) | |
| 14 | 13 | fdmd 6667 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 15 | 14 | reseq2d 5933 | . . . . . 6 ⊢ (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴)) |
| 16 | 15 | feq1d 6639 | . . . . 5 ⊢ (𝜑 → (( I ↾ dom 𝐹):𝐴⟶𝐴 ↔ ( I ↾ 𝐴):𝐴⟶𝐴)) |
| 17 | 12, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ( I ↾ dom 𝐹):𝐴⟶𝐴) |
| 18 | itcovalendof.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 19 | 13, 18 | fexd 7167 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 20 | itcoval0 48768 | . . . . . 6 ⊢ (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| 22 | 21 | feq1d 6639 | . . . 4 ⊢ (𝜑 → (((IterComp‘𝐹)‘0):𝐴⟶𝐴 ↔ ( I ↾ dom 𝐹):𝐴⟶𝐴)) |
| 23 | 17, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → ((IterComp‘𝐹)‘0):𝐴⟶𝐴) |
| 24 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹:𝐴⟶𝐴) |
| 25 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) | |
| 26 | 24, 25 | fcod 6682 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴) |
| 27 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹 ∈ V) |
| 28 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝑦 ∈ ℕ0) | |
| 29 | eqidd 2732 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) | |
| 30 | itcovalsucov 48774 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) | |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) |
| 32 | 31 | feq1d 6639 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴)) |
| 33 | 26, 32 | mpbird 257 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴) |
| 34 | 3, 5, 7, 9, 23, 33 | nn0indd 12576 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| 35 | 1, 34 | mpdan 687 | 1 ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 I cid 5513 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6483 –1-1-onto→wf1o 6486 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 + caddc 11015 ℕ0cn0 12387 IterCompcitco 48763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-seq 13915 df-itco 48765 |
| This theorem is referenced by: ackendofnn0 48790 ackvalsucsucval 48794 |
| Copyright terms: Public domain | W3C validator |