| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalendof | Structured version Visualization version GIF version | ||
| Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalendof.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| itcovalendof.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) |
| itcovalendof.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| itcovalendof | ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalendof.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
| 3 | 2 | feq1d 6670 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘0):𝐴⟶𝐴)) |
| 4 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
| 5 | 4 | feq1d 6670 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴)) |
| 6 | fveq2 6858 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
| 7 | 6 | feq1d 6670 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴)) |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑁 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑁)) | |
| 9 | 8 | feq1d 6670 | . . 3 ⊢ (𝑥 = 𝑁 → (((IterComp‘𝐹)‘𝑥):𝐴⟶𝐴 ↔ ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴)) |
| 10 | f1oi 6838 | . . . . . 6 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 11 | f1of 6800 | . . . . . 6 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐴):𝐴⟶𝐴) |
| 13 | itcovalendof.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) | |
| 14 | 13 | fdmd 6698 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 15 | 14 | reseq2d 5950 | . . . . . 6 ⊢ (𝜑 → ( I ↾ dom 𝐹) = ( I ↾ 𝐴)) |
| 16 | 15 | feq1d 6670 | . . . . 5 ⊢ (𝜑 → (( I ↾ dom 𝐹):𝐴⟶𝐴 ↔ ( I ↾ 𝐴):𝐴⟶𝐴)) |
| 17 | 12, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ( I ↾ dom 𝐹):𝐴⟶𝐴) |
| 18 | itcovalendof.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 19 | 13, 18 | fexd 7201 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 20 | itcoval0 48651 | . . . . . 6 ⊢ (𝐹 ∈ V → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| 22 | 21 | feq1d 6670 | . . . 4 ⊢ (𝜑 → (((IterComp‘𝐹)‘0):𝐴⟶𝐴 ↔ ( I ↾ dom 𝐹):𝐴⟶𝐴)) |
| 23 | 17, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → ((IterComp‘𝐹)‘0):𝐴⟶𝐴) |
| 24 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹:𝐴⟶𝐴) |
| 25 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) | |
| 26 | 24, 25 | fcod 6713 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴) |
| 27 | 19 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝐹 ∈ V) |
| 28 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → 𝑦 ∈ ℕ0) | |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) | |
| 30 | itcovalsucov 48657 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = ((IterComp‘𝐹)‘𝑦)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) | |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ ((IterComp‘𝐹)‘𝑦))) |
| 32 | 31 | feq1d 6670 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → (((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴 ↔ (𝐹 ∘ ((IterComp‘𝐹)‘𝑦)):𝐴⟶𝐴)) |
| 33 | 26, 32 | mpbird 257 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦):𝐴⟶𝐴) → ((IterComp‘𝐹)‘(𝑦 + 1)):𝐴⟶𝐴) |
| 34 | 3, 5, 7, 9, 23, 33 | nn0indd 12631 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| 35 | 1, 34 | mpdan 687 | 1 ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 I cid 5532 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ℕ0cn0 12442 IterCompcitco 48646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-itco 48648 |
| This theorem is referenced by: ackendofnn0 48673 ackvalsucsucval 48677 |
| Copyright terms: Public domain | W3C validator |