MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobr Structured version   Visualization version   GIF version

Theorem dvcobr 25015
Description: The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 25016. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvco.f (𝜑𝐹:𝑋⟶ℂ)
dvco.x (𝜑𝑋𝑆)
dvco.g (𝜑𝐺:𝑌𝑋)
dvco.y (𝜑𝑌𝑇)
dvcobr.s (𝜑𝑆 ⊆ ℂ)
dvcobr.t (𝜑𝑇 ⊆ ℂ)
dvco.k (𝜑𝐾𝑉)
dvco.l (𝜑𝐿𝑉)
dvco.bf (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
dvco.bg (𝜑𝐶(𝑇 D 𝐺)𝐿)
dvco.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcobr (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))

Proof of Theorem dvcobr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4 (𝜑𝐶(𝑇 D 𝐺)𝐿)
2 eqid 2738 . . . . 5 (𝐽t 𝑇) = (𝐽t 𝑇)
3 dvco.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
4 eqid 2738 . . . . 5 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvcobr.t . . . . 5 (𝜑𝑇 ⊆ ℂ)
6 dvco.g . . . . . 6 (𝜑𝐺:𝑌𝑋)
7 dvco.x . . . . . . 7 (𝜑𝑋𝑆)
8 dvcobr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
97, 8sstrd 3927 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
106, 9fssd 6602 . . . . 5 (𝜑𝐺:𝑌⟶ℂ)
11 dvco.y . . . . 5 (𝜑𝑌𝑇)
122, 3, 4, 5, 10, 11eldv 24967 . . . 4 (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
131, 12mpbid 231 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1413simpld 494 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌))
15 dvco.bf . . . . . . 7 (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
16 dvco.f . . . . . . . 8 (𝜑𝐹:𝑋⟶ℂ)
178, 16, 7dvcl 24968 . . . . . . 7 ((𝜑 ∧ (𝐺𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1815, 17mpdan 683 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1918ad2antrr 722 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → 𝐾 ∈ ℂ)
2016adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
21 eldifi 4057 . . . . . . . . . 10 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝑌)
22 ffvelrn 6941 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝑧𝑌) → (𝐺𝑧) ∈ 𝑋)
236, 21, 22syl2an 595 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ 𝑋)
2420, 23ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
2524adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
266adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐺:𝑌𝑋)
275, 10, 11dvbss 24970 . . . . . . . . . . . 12 (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌)
28 reldv 24939 . . . . . . . . . . . . 13 Rel (𝑇 D 𝐺)
29 releldm 5842 . . . . . . . . . . . . 13 ((Rel (𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺))
3028, 1, 29sylancr 586 . . . . . . . . . . . 12 (𝜑𝐶 ∈ dom (𝑇 D 𝐺))
3127, 30sseldd 3918 . . . . . . . . . . 11 (𝜑𝐶𝑌)
3231adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶𝑌)
3326, 32ffvelrnd 6944 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ 𝑋)
3420, 33ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3534adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3625, 35subcld 11262 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
3710ad2antrr 722 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐺:𝑌⟶ℂ)
3821ad2antlr 723 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝑧𝑌)
3937, 38ffvelrnd 6944 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝑧) ∈ ℂ)
4031ad2antrr 722 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐶𝑌)
4137, 40ffvelrnd 6944 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝐶) ∈ ℂ)
4239, 41subcld 11262 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
43 simpr 484 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ¬ (𝐺𝑧) = (𝐺𝐶))
4439, 41subeq0ad 11272 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
4544necon3abid 2979 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) ≠ 0 ↔ ¬ (𝐺𝑧) = (𝐺𝐶)))
4643, 45mpbird 256 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ≠ 0)
4736, 42, 46divcld 11681 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) ∈ ℂ)
4819, 47ifclda 4491 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) ∈ ℂ)
4911, 5sstrd 3927 . . . . 5 (𝜑𝑌 ⊆ ℂ)
5010, 49, 31dvlem 24965 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
51 ssidd 3940 . . . 4 (𝜑 → ℂ ⊆ ℂ)
523cnfldtopon 23852 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
53 txtopon 22650 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5452, 52, 53mp2an 688 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5554toponrestid 21978 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
5623anim1i 614 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
57 eldifsn 4717 . . . . . . 7 ((𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}) ↔ ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
5856, 57sylibr 233 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
5958anasss 466 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) ≠ (𝐺𝐶))) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
60 eldifsni 4720 . . . . . . . 8 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → 𝑦 ≠ (𝐺𝐶))
61 ifnefalse 4468 . . . . . . . 8 (𝑦 ≠ (𝐺𝐶) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6260, 61syl 17 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6362adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
646, 31ffvelrnd 6944 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ 𝑋)
6516, 9, 64dvlem 24965 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) ∈ ℂ)
6663, 65eqeltrd 2839 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) ∈ ℂ)
67 limcresi 24954 . . . . . . 7 (𝐺 lim 𝐶) ⊆ ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶)
686feqmptd 6819 . . . . . . . . . 10 (𝜑𝐺 = (𝑧𝑌 ↦ (𝐺𝑧)))
6968reseq1d 5879 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})))
70 difss 4062 . . . . . . . . . 10 (𝑌 ∖ {𝐶}) ⊆ 𝑌
71 resmpt 5934 . . . . . . . . . 10 ((𝑌 ∖ {𝐶}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7270, 71ax-mp 5 . . . . . . . . 9 ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧))
7369, 72eqtrdi 2795 . . . . . . . 8 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7473oveq1d 7270 . . . . . . 7 (𝜑 → ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
7567, 74sseqtrid 3969 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) ⊆ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
76 eqid 2738 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
7776, 3dvcnp2 24989 . . . . . . . . 9 (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
785, 10, 11, 30, 77syl31anc 1371 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
793, 76cnplimc 24956 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8049, 31, 79syl2anc 583 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8178, 80mpbid 231 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
8281simprd 495 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
8375, 82sseldd 3918 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
84 eqid 2738 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
85 eqid 2738 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
8684, 3, 85, 8, 16, 7eldv 24967 . . . . . . . 8 (𝜑 → ((𝐺𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))))
8715, 86mpbid 231 . . . . . . 7 (𝜑 → ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))))
8887simprd 495 . . . . . 6 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))
8962mpteq2ia 5173 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
9089oveq1i 7265 . . . . . 6 ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)) = ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))
9188, 90eleqtrrdi 2850 . . . . 5 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)))
92 eqeq1 2742 . . . . . 6 (𝑦 = (𝐺𝑧) → (𝑦 = (𝐺𝐶) ↔ (𝐺𝑧) = (𝐺𝐶)))
93 fveq2 6756 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝐹𝑦) = (𝐹‘(𝐺𝑧)))
9493oveq1d 7270 . . . . . . 7 (𝑦 = (𝐺𝑧) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
95 oveq1 7262 . . . . . . 7 (𝑦 = (𝐺𝑧) → (𝑦 − (𝐺𝐶)) = ((𝐺𝑧) − (𝐺𝐶)))
9694, 95oveq12d 7273 . . . . . 6 (𝑦 = (𝐺𝑧) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))
9792, 96ifbieq2d 4482 . . . . 5 (𝑦 = (𝐺𝑧) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))))
98 iftrue 4462 . . . . . 6 ((𝐺𝑧) = (𝐺𝐶) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
9998ad2antll 725 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) = (𝐺𝐶))) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
10059, 66, 83, 91, 97, 99limcco 24962 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))) lim 𝐶))
10113simprd 495 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1023mulcn 23936 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1035, 10, 11dvcl 24968 . . . . . . 7 ((𝜑𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
1041, 103mpdan 683 . . . . . 6 (𝜑𝐿 ∈ ℂ)
10518, 104opelxpd 5618 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
10654toponunii 21973 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
107106cncnpi 22337 . . . . 5 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
108102, 105, 107sylancr 586 . . . 4 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
10948, 50, 51, 51, 3, 55, 100, 101, 108limccnp2 24961 . . 3 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
110 oveq1 7262 . . . . . . . 8 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
111110eqeq1d 2740 . . . . . . 7 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
112 oveq1 7262 . . . . . . . 8 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
113112eqeq1d 2740 . . . . . . 7 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
11419mul01d 11104 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · 0) = 0)
1159adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑋 ⊆ ℂ)
116115, 23sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
117115, 33sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
118116, 117subeq0ad 11272 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
119118biimpar 477 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) = 0)
120119oveq1d 7270 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
12149adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑌 ⊆ ℂ)
12221adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝑌)
123121, 122sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧 ∈ ℂ)
124121, 32sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶 ∈ ℂ)
125123, 124subcld 11262 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
126 eldifsni 4720 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝐶)
127126adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝐶)
128123, 124, 127subne0d 11271 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
129125, 128div0d 11680 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (0 / (𝑧𝐶)) = 0)
130129adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (0 / (𝑧𝐶)) = 0)
131120, 130eqtrd 2778 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = 0)
132131oveq2d 7271 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝐾 · 0))
133 fveq2 6756 . . . . . . . . . . . 12 ((𝐺𝑧) = (𝐺𝐶) → (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶)))
13424, 34subeq0ad 11272 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0 ↔ (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶))))
135133, 134syl5ibr 245 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐺𝑧) = (𝐺𝐶) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0))
136135imp 406 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0)
137136oveq1d 7270 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
138137, 130eqtrd 2778 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = 0)
139114, 132, 1383eqtr4d 2788 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
140125adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ∈ ℂ)
141128adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ≠ 0)
14236, 42, 140, 46, 141dmdcan2d 11711 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
143111, 113, 139, 142ifbothda 4494 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
144 fvco3 6849 . . . . . . . . 9 ((𝐺:𝑌𝑋𝑧𝑌) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
1456, 21, 144syl2an 595 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
146 fvco3 6849 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝐶𝑌) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
1476, 31, 146syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
148147adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
149145, 148oveq12d 7273 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
150149oveq1d 7270 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
151143, 150eqtr4d 2781 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
152151mpteq2dva 5170 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))))
153152oveq1d 7270 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
154109, 153eleqtrd 2841 . 2 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
155 eqid 2738 . . 3 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
156 fco 6608 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
15716, 6, 156syl2anc 583 . . 3 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
1582, 3, 155, 5, 157, 11eldv 24967 . 2 (𝜑 → (𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
15914, 154, 158mpbir2and 709 1 (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  cres 5582  ccom 5584  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  cmin 11135   / cdiv 11562  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  TopOnctopon 21967  intcnt 22076   Cn ccn 22283   CnP ccnp 22284   ×t ctx 22619   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvco  25016  dvcof  25017  dvef  25049
  Copyright terms: Public domain W3C validator