MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobr Structured version   Visualization version   GIF version

Theorem dvcobr 25849
Description: The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 25851. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11148 and remove unnecessary hypotheses. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
dvco.f (𝜑𝐹:𝑋⟶ℂ)
dvco.x (𝜑𝑋𝑆)
dvco.g (𝜑𝐺:𝑌𝑋)
dvco.y (𝜑𝑌𝑇)
dvcobr.s (𝜑𝑆 ⊆ ℂ)
dvcobr.t (𝜑𝑇 ⊆ ℂ)
dvco.bf (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
dvco.bg (𝜑𝐶(𝑇 D 𝐺)𝐿)
dvco.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcobr (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))

Proof of Theorem dvcobr
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4 (𝜑𝐶(𝑇 D 𝐺)𝐿)
2 eqid 2729 . . . . 5 (𝐽t 𝑇) = (𝐽t 𝑇)
3 dvco.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
4 eqid 2729 . . . . 5 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvcobr.t . . . . 5 (𝜑𝑇 ⊆ ℂ)
6 dvco.g . . . . . 6 (𝜑𝐺:𝑌𝑋)
7 dvco.x . . . . . . 7 (𝜑𝑋𝑆)
8 dvcobr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
97, 8sstrd 3957 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
106, 9fssd 6705 . . . . 5 (𝜑𝐺:𝑌⟶ℂ)
11 dvco.y . . . . 5 (𝜑𝑌𝑇)
122, 3, 4, 5, 10, 11eldv 25799 . . . 4 (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
131, 12mpbid 232 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1413simpld 494 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌))
15 dvco.bf . . . . . . . . 9 (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
16 dvco.f . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
178, 16, 7dvcl 25800 . . . . . . . . 9 ((𝜑 ∧ (𝐺𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1815, 17mpdan 687 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
1918ad2antrr 726 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → 𝐾 ∈ ℂ)
2016adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
21 eldifi 4094 . . . . . . . . . . . 12 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝑌)
22 ffvelcdm 7053 . . . . . . . . . . . 12 ((𝐺:𝑌𝑋𝑧𝑌) → (𝐺𝑧) ∈ 𝑋)
236, 21, 22syl2an 596 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ 𝑋)
2420, 23ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
266adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐺:𝑌𝑋)
275, 10, 11dvbss 25802 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌)
28 reldv 25771 . . . . . . . . . . . . . . 15 Rel (𝑇 D 𝐺)
29 releldm 5908 . . . . . . . . . . . . . . 15 ((Rel (𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺))
3028, 1, 29sylancr 587 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ dom (𝑇 D 𝐺))
3127, 30sseldd 3947 . . . . . . . . . . . . 13 (𝜑𝐶𝑌)
3231adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶𝑌)
3326, 32ffvelcdmd 7057 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ 𝑋)
3420, 33ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3534adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3625, 35subcld 11533 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
3710ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐺:𝑌⟶ℂ)
3821ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝑧𝑌)
3937, 38ffvelcdmd 7057 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝑧) ∈ ℂ)
4031ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐶𝑌)
4137, 40ffvelcdmd 7057 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝐶) ∈ ℂ)
4239, 41subcld 11533 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
43 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ¬ (𝐺𝑧) = (𝐺𝐶))
4439, 41subeq0ad 11543 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
4544necon3abid 2961 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) ≠ 0 ↔ ¬ (𝐺𝑧) = (𝐺𝐶)))
4643, 45mpbird 257 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ≠ 0)
4736, 42, 46divcld 11958 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) ∈ ℂ)
4819, 47ifclda 4524 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) ∈ ℂ)
4911, 5sstrd 3957 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
5010, 49, 31dvlem 25797 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
51 ssidd 3970 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
523cnfldtopon 24670 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
53 txtopon 23478 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5452, 52, 53mp2an 692 . . . . . . 7 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5554toponrestid 22808 . . . . . 6 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
5623anim1i 615 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
57 eldifsn 4750 . . . . . . . . 9 ((𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}) ↔ ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
5856, 57sylibr 234 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
5958anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) ≠ (𝐺𝐶))) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
60 eldifsni 4754 . . . . . . . . . 10 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → 𝑦 ≠ (𝐺𝐶))
61 ifnefalse 4500 . . . . . . . . . 10 (𝑦 ≠ (𝐺𝐶) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6260, 61syl 17 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6362adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
646, 31ffvelcdmd 7057 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ 𝑋)
6516, 9, 64dvlem 25797 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) ∈ ℂ)
6663, 65eqeltrd 2828 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) ∈ ℂ)
67 limcresi 25786 . . . . . . . . 9 (𝐺 lim 𝐶) ⊆ ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶)
686feqmptd 6929 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝑌 ↦ (𝐺𝑧)))
6968reseq1d 5949 . . . . . . . . . . 11 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})))
70 difss 4099 . . . . . . . . . . . 12 (𝑌 ∖ {𝐶}) ⊆ 𝑌
71 resmpt 6008 . . . . . . . . . . . 12 ((𝑌 ∖ {𝐶}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7270, 71ax-mp 5 . . . . . . . . . . 11 ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧))
7369, 72eqtrdi 2780 . . . . . . . . . 10 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7473oveq1d 7402 . . . . . . . . 9 (𝜑 → ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
7567, 74sseqtrid 3989 . . . . . . . 8 (𝜑 → (𝐺 lim 𝐶) ⊆ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
76 eqid 2729 . . . . . . . . . . . 12 (𝐽t 𝑌) = (𝐽t 𝑌)
7776, 3dvcnp2 25821 . . . . . . . . . . 11 (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
785, 10, 11, 30, 77syl31anc 1375 . . . . . . . . . 10 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
793, 76cnplimc 25788 . . . . . . . . . . 11 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8049, 31, 79syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8178, 80mpbid 232 . . . . . . . . 9 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
8281simprd 495 . . . . . . . 8 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
8375, 82sseldd 3947 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
84 eqid 2729 . . . . . . . . . . 11 (𝐽t 𝑆) = (𝐽t 𝑆)
85 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
8684, 3, 85, 8, 16, 7eldv 25799 . . . . . . . . . 10 (𝜑 → ((𝐺𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))))
8715, 86mpbid 232 . . . . . . . . 9 (𝜑 → ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))))
8887simprd 495 . . . . . . . 8 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))
8962mpteq2ia 5202 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
9089oveq1i 7397 . . . . . . . 8 ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)) = ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))
9188, 90eleqtrrdi 2839 . . . . . . 7 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)))
92 eqeq1 2733 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑦 = (𝐺𝐶) ↔ (𝐺𝑧) = (𝐺𝐶)))
93 fveq2 6858 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹𝑦) = (𝐹‘(𝐺𝑧)))
9493oveq1d 7402 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
95 oveq1 7394 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → (𝑦 − (𝐺𝐶)) = ((𝐺𝑧) − (𝐺𝐶)))
9694, 95oveq12d 7405 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))
9792, 96ifbieq2d 4515 . . . . . . 7 (𝑦 = (𝐺𝑧) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))))
98 iftrue 4494 . . . . . . . 8 ((𝐺𝑧) = (𝐺𝐶) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
9998ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) = (𝐺𝐶))) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
10059, 66, 83, 91, 97, 99limcco 25794 . . . . . 6 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))) lim 𝐶))
10113simprd 495 . . . . . 6 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1023mpomulcn 24758 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1035, 10, 11dvcl 25800 . . . . . . . . 9 ((𝜑𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
1041, 103mpdan 687 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
10518, 104opelxpd 5677 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
10654toponunii 22803 . . . . . . . 8 (ℂ × ℂ) = (𝐽 ×t 𝐽)
107106cncnpi 23165 . . . . . . 7 (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
108102, 105, 107sylancr 587 . . . . . 6 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
10948, 50, 51, 51, 3, 55, 100, 101, 108limccnp2 25793 . . . . 5 (𝜑 → (𝐾(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
110 df-mpt 5189 . . . . . 6 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))}
111110oveq1i 7397 . . . . 5 ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} lim 𝐶)
112109, 111eleqtrdi 2838 . . . 4 (𝜑 → (𝐾(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝐿) ∈ ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} lim 𝐶))
113 ovmpot 7550 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐾(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝐿) = (𝐾 · 𝐿))
11418, 104, 113syl2anc 584 . . . 4 (𝜑 → (𝐾(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝐿) = (𝐾 · 𝐿))
115 ovmpot 7550 . . . . . . . . 9 ((if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) ∈ ℂ ∧ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
11648, 50, 115syl2anc 584 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
117116eqeq2d 2740 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↔ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
118117pm5.32da 579 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) ↔ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))))
119118opabbidv 5173 . . . . 5 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))})
120 df-mpt 5189 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))}
121120eqcomi 2738 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
122121eqeq2i 2742 . . . . . . 7 ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} ↔ {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
123122biimpi 216 . . . . . 6 ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
124123oveq1d 7402 . . . . 5 ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} → ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
125119, 124syl 17 . . . 4 (𝜑 → ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ 𝑤 = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))} lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
126112, 114, 1253eltr3d 2842 . . 3 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
127 oveq1 7394 . . . . . . . 8 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
128127eqeq1d 2731 . . . . . . 7 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
129 oveq1 7394 . . . . . . . 8 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
130129eqeq1d 2731 . . . . . . 7 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
13119mul01d 11373 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · 0) = 0)
1329adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑋 ⊆ ℂ)
133132, 23sseldd 3947 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
134132, 33sseldd 3947 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
135133, 134subeq0ad 11543 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
136135biimpar 477 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) = 0)
137136oveq1d 7402 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
13849adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑌 ⊆ ℂ)
13921adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝑌)
140138, 139sseldd 3947 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧 ∈ ℂ)
141138, 32sseldd 3947 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶 ∈ ℂ)
142140, 141subcld 11533 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
143 eldifsni 4754 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝐶)
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝐶)
145140, 141, 144subne0d 11542 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
146142, 145div0d 11957 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (0 / (𝑧𝐶)) = 0)
147146adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (0 / (𝑧𝐶)) = 0)
148137, 147eqtrd 2764 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = 0)
149148oveq2d 7403 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝐾 · 0))
150 fveq2 6858 . . . . . . . . . . . 12 ((𝐺𝑧) = (𝐺𝐶) → (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶)))
15124, 34subeq0ad 11543 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0 ↔ (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶))))
152150, 151imbitrrid 246 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐺𝑧) = (𝐺𝐶) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0))
153152imp 406 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0)
154153oveq1d 7402 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
155154, 147eqtrd 2764 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = 0)
156131, 149, 1553eqtr4d 2774 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
157142adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ∈ ℂ)
158145adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ≠ 0)
15936, 42, 157, 46, 158dmdcan2d 11988 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
160128, 130, 156, 159ifbothda 4527 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
161 fvco3 6960 . . . . . . . . 9 ((𝐺:𝑌𝑋𝑧𝑌) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
1626, 21, 161syl2an 596 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
1636, 31fvco3d 6961 . . . . . . . . 9 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
164163adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
165162, 164oveq12d 7405 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
166165oveq1d 7402 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
167160, 166eqtr4d 2767 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
168167mpteq2dva 5200 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))))
169168oveq1d 7402 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
170126, 169eleqtrd 2830 . 2 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
171 eqid 2729 . . 3 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
17216, 6fcod 6713 . . 3 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
1732, 3, 171, 5, 172, 11eldv 25799 . 2 (𝜑 → (𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
17414, 170, 173mpbir2and 713 1 (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  wss 3914  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  dom cdm 5638  cres 5640  ccom 5642  Rel wrel 5643  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  0cc0 11068   · cmul 11073  cmin 11405   / cdiv 11835  t crest 17383  TopOpenctopn 17384  fldccnfld 21264  TopOnctopon 22797  intcnt 22904   Cn ccn 23111   CnP ccnp 23112   ×t ctx 23447   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvco  25851  dvcof  25852  dvef  25884
  Copyright terms: Public domain W3C validator