MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem3 Structured version   Visualization version   GIF version

Theorem mapfienlem3 9428
Description: Lemma 3 for mapfien 9429. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem3
StepHypRef Expression
1 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
2 f1ocnv 6845 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
3 f1of 6833 . . . . . . 7 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
41, 2, 33syl 18 . . . . . 6 (𝜑𝐺:𝐷𝐵)
54adantr 479 . . . . 5 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
6 elrabi 3669 . . . . . . . 8 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
7 mapfien.t . . . . . . . 8 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
86, 7eleq2s 2843 . . . . . . 7 (𝑔𝑇𝑔 ∈ (𝐷m 𝐶))
98adantl 480 . . . . . 6 ((𝜑𝑔𝑇) → 𝑔 ∈ (𝐷m 𝐶))
10 elmapi 8864 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
119, 10syl 17 . . . . 5 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
125, 11fcod 6743 . . . 4 ((𝜑𝑔𝑇) → (𝐺𝑔):𝐶𝐵)
13 mapfien.f . . . . . 6 (𝜑𝐹:𝐶1-1-onto𝐴)
14 f1ocnv 6845 . . . . . 6 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
15 f1of 6833 . . . . . 6 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
1613, 14, 153syl 18 . . . . 5 (𝜑𝐹:𝐴𝐶)
1716adantr 479 . . . 4 ((𝜑𝑔𝑇) → 𝐹:𝐴𝐶)
1812, 17fcod 6743 . . 3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
19 mapfien.b . . . . 5 (𝜑𝐵𝑉)
20 mapfien.a . . . . 5 (𝜑𝐴𝑈)
2119, 20elmapd 8855 . . . 4 (𝜑 → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2221adantr 479 . . 3 ((𝜑𝑔𝑇) → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2318, 22mpbird 256 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴))
24 mapfien.s . . 3 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
25 mapfien.w . . 3 𝑊 = (𝐺𝑍)
26 mapfien.c . . 3 (𝜑𝐶𝑋)
27 mapfien.d . . 3 (𝜑𝐷𝑌)
28 mapfien.z . . 3 (𝜑𝑍𝐵)
2924, 7, 25, 13, 1, 20, 19, 26, 27, 28mapfienlem2 9427 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
30 breq1 5146 . . 3 (𝑥 = ((𝐺𝑔) ∘ 𝐹) → (𝑥 finSupp 𝑍 ↔ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3130, 24elrab2 3678 . 2 (((𝐺𝑔) ∘ 𝐹) ∈ 𝑆 ↔ (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ∧ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3223, 29, 31sylanbrc 581 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3419   class class class wbr 5143  ccnv 5671  ccom 5676  wf 6538  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7415  m cmap 8841   finSupp cfsupp 9383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-1o 8483  df-map 8843  df-en 8961  df-fin 8964  df-fsupp 9384
This theorem is referenced by:  mapfien  9429
  Copyright terms: Public domain W3C validator