![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfienlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for mapfien 8603. (Contributed by AV, 3-Jul-2019.) |
Ref | Expression |
---|---|
mapfien.s | ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} |
mapfien.t | ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} |
mapfien.w | ⊢ 𝑊 = (𝐺‘𝑍) |
mapfien.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
mapfien.g | ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
mapfien.a | ⊢ (𝜑 → 𝐴 ∈ V) |
mapfien.b | ⊢ (𝜑 → 𝐵 ∈ V) |
mapfien.c | ⊢ (𝜑 → 𝐶 ∈ V) |
mapfien.d | ⊢ (𝜑 → 𝐷 ∈ V) |
mapfien.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
mapfienlem3 | ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfien.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) | |
2 | f1ocnv 6405 | . . . . . . 7 ⊢ (𝐺:𝐵–1-1-onto→𝐷 → ◡𝐺:𝐷–1-1-onto→𝐵) | |
3 | f1of 6393 | . . . . . . 7 ⊢ (◡𝐺:𝐷–1-1-onto→𝐵 → ◡𝐺:𝐷⟶𝐵) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ◡𝐺:𝐷⟶𝐵) |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ◡𝐺:𝐷⟶𝐵) |
6 | elrabi 3567 | . . . . . . . 8 ⊢ (𝑔 ∈ {𝑥 ∈ (𝐷 ↑𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷 ↑𝑚 𝐶)) | |
7 | mapfien.t | . . . . . . . 8 ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} | |
8 | 6, 7 | eleq2s 2877 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑇 → 𝑔 ∈ (𝐷 ↑𝑚 𝐶)) |
9 | 8 | adantl 475 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ (𝐷 ↑𝑚 𝐶)) |
10 | elmapi 8164 | . . . . . 6 ⊢ (𝑔 ∈ (𝐷 ↑𝑚 𝐶) → 𝑔:𝐶⟶𝐷) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑔:𝐶⟶𝐷) |
12 | fco 6310 | . . . . 5 ⊢ ((◡𝐺:𝐷⟶𝐵 ∧ 𝑔:𝐶⟶𝐷) → (◡𝐺 ∘ 𝑔):𝐶⟶𝐵) | |
13 | 5, 11, 12 | syl2anc 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (◡𝐺 ∘ 𝑔):𝐶⟶𝐵) |
14 | mapfien.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
15 | f1ocnv 6405 | . . . . . 6 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐶) | |
16 | f1of 6393 | . . . . . 6 ⊢ (◡𝐹:𝐴–1-1-onto→𝐶 → ◡𝐹:𝐴⟶𝐶) | |
17 | 14, 15, 16 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡𝐹:𝐴⟶𝐶) |
18 | 17 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ◡𝐹:𝐴⟶𝐶) |
19 | fco 6310 | . . . 4 ⊢ (((◡𝐺 ∘ 𝑔):𝐶⟶𝐵 ∧ ◡𝐹:𝐴⟶𝐶) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹):𝐴⟶𝐵) | |
20 | 13, 18, 19 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹):𝐴⟶𝐵) |
21 | mapfien.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
22 | mapfien.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
23 | 21, 22 | elmapd 8156 | . . . 4 ⊢ (𝜑 → (((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ (𝐵 ↑𝑚 𝐴) ↔ ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹):𝐴⟶𝐵)) |
24 | 23 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ (𝐵 ↑𝑚 𝐴) ↔ ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹):𝐴⟶𝐵)) |
25 | 20, 24 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ (𝐵 ↑𝑚 𝐴)) |
26 | mapfien.s | . . 3 ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} | |
27 | mapfien.w | . . 3 ⊢ 𝑊 = (𝐺‘𝑍) | |
28 | mapfien.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
29 | mapfien.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) | |
30 | mapfien.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
31 | 26, 7, 27, 14, 1, 22, 21, 28, 29, 30 | mapfienlem2 8601 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍) |
32 | breq1 4891 | . . 3 ⊢ (𝑥 = ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) → (𝑥 finSupp 𝑍 ↔ ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍)) | |
33 | 32, 26 | elrab2 3576 | . 2 ⊢ (((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ 𝑆 ↔ (((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ (𝐵 ↑𝑚 𝐴) ∧ ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍)) |
34 | 25, 31, 33 | sylanbrc 578 | 1 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 class class class wbr 4888 ◡ccnv 5356 ∘ ccom 5361 ⟶wf 6133 –1-1-onto→wf1o 6136 ‘cfv 6137 (class class class)co 6924 ↑𝑚 cmap 8142 finSupp cfsupp 8565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-1o 7845 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-fin 8247 df-fsupp 8566 |
This theorem is referenced by: mapfien 8603 |
Copyright terms: Public domain | W3C validator |