MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem3 Structured version   Visualization version   GIF version

Theorem mapfienlem3 9448
Description: Lemma 3 for mapfien 9449. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem3
StepHypRef Expression
1 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
2 f1ocnv 6859 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
3 f1of 6847 . . . . . . 7 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
41, 2, 33syl 18 . . . . . 6 (𝜑𝐺:𝐷𝐵)
54adantr 480 . . . . 5 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
6 elrabi 3686 . . . . . . . 8 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
7 mapfien.t . . . . . . . 8 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
86, 7eleq2s 2858 . . . . . . 7 (𝑔𝑇𝑔 ∈ (𝐷m 𝐶))
98adantl 481 . . . . . 6 ((𝜑𝑔𝑇) → 𝑔 ∈ (𝐷m 𝐶))
10 elmapi 8890 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
119, 10syl 17 . . . . 5 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
125, 11fcod 6760 . . . 4 ((𝜑𝑔𝑇) → (𝐺𝑔):𝐶𝐵)
13 mapfien.f . . . . . 6 (𝜑𝐹:𝐶1-1-onto𝐴)
14 f1ocnv 6859 . . . . . 6 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
15 f1of 6847 . . . . . 6 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
1613, 14, 153syl 18 . . . . 5 (𝜑𝐹:𝐴𝐶)
1716adantr 480 . . . 4 ((𝜑𝑔𝑇) → 𝐹:𝐴𝐶)
1812, 17fcod 6760 . . 3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
19 mapfien.b . . . . 5 (𝜑𝐵𝑉)
20 mapfien.a . . . . 5 (𝜑𝐴𝑈)
2119, 20elmapd 8881 . . . 4 (𝜑 → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2221adantr 480 . . 3 ((𝜑𝑔𝑇) → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2318, 22mpbird 257 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴))
24 mapfien.s . . 3 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
25 mapfien.w . . 3 𝑊 = (𝐺𝑍)
26 mapfien.c . . 3 (𝜑𝐶𝑋)
27 mapfien.d . . 3 (𝜑𝐷𝑌)
28 mapfien.z . . 3 (𝜑𝑍𝐵)
2924, 7, 25, 13, 1, 20, 19, 26, 27, 28mapfienlem2 9447 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
30 breq1 5145 . . 3 (𝑥 = ((𝐺𝑔) ∘ 𝐹) → (𝑥 finSupp 𝑍 ↔ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3130, 24elrab2 3694 . 2 (((𝐺𝑔) ∘ 𝐹) ∈ 𝑆 ↔ (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ∧ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3223, 29, 31sylanbrc 583 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3435   class class class wbr 5142  ccnv 5683  ccom 5688  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  m cmap 8867   finSupp cfsupp 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-1o 8507  df-map 8869  df-en 8987  df-dom 8988  df-fin 8990  df-fsupp 9403
This theorem is referenced by:  mapfien  9449
  Copyright terms: Public domain W3C validator