MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem3 Structured version   Visualization version   GIF version

Theorem mapfienlem3 8854
Description: Lemma 3 for mapfien 8855. (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴 ∈ V)
mapfien.b (𝜑𝐵 ∈ V)
mapfien.c (𝜑𝐶 ∈ V)
mapfien.d (𝜑𝐷 ∈ V)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑊(𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem3
StepHypRef Expression
1 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
2 f1ocnv 6602 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
3 f1of 6590 . . . . . . 7 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
41, 2, 33syl 18 . . . . . 6 (𝜑𝐺:𝐷𝐵)
54adantr 484 . . . . 5 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
6 elrabi 3623 . . . . . . . 8 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
7 mapfien.t . . . . . . . 8 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
86, 7eleq2s 2908 . . . . . . 7 (𝑔𝑇𝑔 ∈ (𝐷m 𝐶))
98adantl 485 . . . . . 6 ((𝜑𝑔𝑇) → 𝑔 ∈ (𝐷m 𝐶))
10 elmapi 8411 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
119, 10syl 17 . . . . 5 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
12 fco 6505 . . . . 5 ((𝐺:𝐷𝐵𝑔:𝐶𝐷) → (𝐺𝑔):𝐶𝐵)
135, 11, 12syl2anc 587 . . . 4 ((𝜑𝑔𝑇) → (𝐺𝑔):𝐶𝐵)
14 mapfien.f . . . . . 6 (𝜑𝐹:𝐶1-1-onto𝐴)
15 f1ocnv 6602 . . . . . 6 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
16 f1of 6590 . . . . . 6 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
1714, 15, 163syl 18 . . . . 5 (𝜑𝐹:𝐴𝐶)
1817adantr 484 . . . 4 ((𝜑𝑔𝑇) → 𝐹:𝐴𝐶)
19 fco 6505 . . . 4 (((𝐺𝑔):𝐶𝐵𝐹:𝐴𝐶) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
2013, 18, 19syl2anc 587 . . 3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
21 mapfien.b . . . . 5 (𝜑𝐵 ∈ V)
22 mapfien.a . . . . 5 (𝜑𝐴 ∈ V)
2321, 22elmapd 8403 . . . 4 (𝜑 → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2423adantr 484 . . 3 ((𝜑𝑔𝑇) → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2520, 24mpbird 260 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴))
26 mapfien.s . . 3 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
27 mapfien.w . . 3 𝑊 = (𝐺𝑍)
28 mapfien.c . . 3 (𝜑𝐶 ∈ V)
29 mapfien.d . . 3 (𝜑𝐷 ∈ V)
30 mapfien.z . . 3 (𝜑𝑍𝐵)
3126, 7, 27, 14, 1, 22, 21, 28, 29, 30mapfienlem2 8853 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
32 breq1 5033 . . 3 (𝑥 = ((𝐺𝑔) ∘ 𝐹) → (𝑥 finSupp 𝑍 ↔ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3332, 26elrab2 3631 . 2 (((𝐺𝑔) ∘ 𝐹) ∈ 𝑆 ↔ (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ∧ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3425, 31, 33sylanbrc 586 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441   class class class wbr 5030  ccnv 5518  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  m cmap 8389   finSupp cfsupp 8817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fsupp 8818
This theorem is referenced by:  mapfien  8855
  Copyright terms: Public domain W3C validator