MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem3 Structured version   Visualization version   GIF version

Theorem mapfienlem3 9264
Description: Lemma 3 for mapfien 9265. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem3
StepHypRef Expression
1 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
2 f1ocnv 6779 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
3 f1of 6767 . . . . . . 7 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
41, 2, 33syl 18 . . . . . 6 (𝜑𝐺:𝐷𝐵)
54adantr 481 . . . . 5 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
6 elrabi 3628 . . . . . . . 8 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
7 mapfien.t . . . . . . . 8 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
86, 7eleq2s 2855 . . . . . . 7 (𝑔𝑇𝑔 ∈ (𝐷m 𝐶))
98adantl 482 . . . . . 6 ((𝜑𝑔𝑇) → 𝑔 ∈ (𝐷m 𝐶))
10 elmapi 8708 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
119, 10syl 17 . . . . 5 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
125, 11fcod 6677 . . . 4 ((𝜑𝑔𝑇) → (𝐺𝑔):𝐶𝐵)
13 mapfien.f . . . . . 6 (𝜑𝐹:𝐶1-1-onto𝐴)
14 f1ocnv 6779 . . . . . 6 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
15 f1of 6767 . . . . . 6 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
1613, 14, 153syl 18 . . . . 5 (𝜑𝐹:𝐴𝐶)
1716adantr 481 . . . 4 ((𝜑𝑔𝑇) → 𝐹:𝐴𝐶)
1812, 17fcod 6677 . . 3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
19 mapfien.b . . . . 5 (𝜑𝐵𝑉)
20 mapfien.a . . . . 5 (𝜑𝐴𝑈)
2119, 20elmapd 8700 . . . 4 (𝜑 → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2221adantr 481 . . 3 ((𝜑𝑔𝑇) → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2318, 22mpbird 256 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴))
24 mapfien.s . . 3 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
25 mapfien.w . . 3 𝑊 = (𝐺𝑍)
26 mapfien.c . . 3 (𝜑𝐶𝑋)
27 mapfien.d . . 3 (𝜑𝐷𝑌)
28 mapfien.z . . 3 (𝜑𝑍𝐵)
2924, 7, 25, 13, 1, 20, 19, 26, 27, 28mapfienlem2 9263 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
30 breq1 5095 . . 3 (𝑥 = ((𝐺𝑔) ∘ 𝐹) → (𝑥 finSupp 𝑍 ↔ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3130, 24elrab2 3637 . 2 (((𝐺𝑔) ∘ 𝐹) ∈ 𝑆 ↔ (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵m 𝐴) ∧ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3223, 29, 31sylanbrc 583 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  {crab 3403   class class class wbr 5092  ccnv 5619  ccom 5624  wf 6475  1-1-ontowf1o 6478  cfv 6479  (class class class)co 7337  m cmap 8686   finSupp cfsupp 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-1o 8367  df-map 8688  df-en 8805  df-fin 8808  df-fsupp 9227
This theorem is referenced by:  mapfien  9265
  Copyright terms: Public domain W3C validator