![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvaluz4 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfvaluz4.1 | ⊢ Ⅎ𝑘𝜑 |
liminfvaluz4.2 | ⊢ Ⅎ𝑘𝐹 |
liminfvaluz4.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfvaluz4.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfvaluz4.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
liminfvaluz4 | ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘𝑍 | |
2 | liminfvaluz4.2 | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
3 | liminfvaluz4.5 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | 1, 2, 3 | feqmptdf 6987 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
5 | 4 | fveq2d 6919 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
6 | liminfvaluz4.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
7 | liminfvaluz4.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | liminfvaluz4.4 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
9 | 3 | ffvelcdmda 7113 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
10 | 6, 7, 8, 9 | liminfvaluz2 45705 | . 2 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
11 | 5, 10 | eqtrd 2780 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ↦ cmpt 5249 ⟶wf 6564 ‘cfv 6568 ℝcr 11177 -cneg 11515 ℤcz 12633 ℤ≥cuz 12897 -𝑒cxne 13166 lim supclsp 15510 lim infclsi 45661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-sup 9505 df-inf 9506 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-n0 12548 df-z 12634 df-uz 12898 df-q 13008 df-xneg 13169 df-ico 13407 df-limsup 15511 df-liminf 45662 |
This theorem is referenced by: liminfreuzlem 45712 liminfltlem 45714 |
Copyright terms: Public domain | W3C validator |