Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvaluz3 Structured version   Visualization version   GIF version

Theorem liminfvaluz3 45794
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvaluz3.1 𝑘𝜑
liminfvaluz3.2 𝑘𝐹
liminfvaluz3.3 (𝜑𝑀 ∈ ℤ)
liminfvaluz3.4 𝑍 = (ℤ𝑀)
liminfvaluz3.5 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfvaluz3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem liminfvaluz3
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑘𝑍
2 liminfvaluz3.2 . . . 4 𝑘𝐹
3 liminfvaluz3.5 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3feqmptdf 6931 . . 3 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
54fveq2d 6862 . 2 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
6 liminfvaluz3.1 . . 3 𝑘𝜑
7 liminfvaluz3.3 . . 3 (𝜑𝑀 ∈ ℤ)
8 liminfvaluz3.4 . . 3 𝑍 = (ℤ𝑀)
93ffvelcdmda 7056 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
106, 7, 8, 9liminfvaluz 45790 . 2 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
115, 10eqtrd 2764 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  cmpt 5188  wf 6507  cfv 6511  *cxr 11207  cz 12529  cuz 12793  -𝑒cxne 13069  lim supclsp 15436  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-xneg 13072  df-ico 13312  df-limsup 15437  df-liminf 45750
This theorem is referenced by:  liminflbuz2  45813  liminfpnfuz  45814
  Copyright terms: Public domain W3C validator