| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvaluz3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfvaluz3.1 | ⊢ Ⅎ𝑘𝜑 |
| liminfvaluz3.2 | ⊢ Ⅎ𝑘𝐹 |
| liminfvaluz3.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminfvaluz3.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminfvaluz3.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| liminfvaluz3 | ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑘𝑍 | |
| 2 | liminfvaluz3.2 | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | liminfvaluz3.5 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 4 | 1, 2, 3 | feqmptdf 6960 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 5 | 4 | fveq2d 6891 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
| 6 | liminfvaluz3.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 7 | liminfvaluz3.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | liminfvaluz3.4 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 9 | 3 | ffvelcdmda 7085 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ*) |
| 10 | 6, 7, 8, 9 | liminfvaluz 45752 | . 2 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)))) |
| 11 | 5, 10 | eqtrd 2769 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ↦ cmpt 5207 ⟶wf 6538 ‘cfv 6542 ℝ*cxr 11277 ℤcz 12597 ℤ≥cuz 12861 -𝑒cxne 13134 lim supclsp 15489 lim infclsi 45711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-q 12974 df-xneg 13137 df-ico 13376 df-limsup 15490 df-liminf 45712 |
| This theorem is referenced by: liminflbuz2 45775 liminfpnfuz 45776 |
| Copyright terms: Public domain | W3C validator |