Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvaluz3 Structured version   Visualization version   GIF version

Theorem liminfvaluz3 42378
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvaluz3.1 𝑘𝜑
liminfvaluz3.2 𝑘𝐹
liminfvaluz3.3 (𝜑𝑀 ∈ ℤ)
liminfvaluz3.4 𝑍 = (ℤ𝑀)
liminfvaluz3.5 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfvaluz3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem liminfvaluz3
StepHypRef Expression
1 nfcv 2979 . . . 4 𝑘𝑍
2 liminfvaluz3.2 . . . 4 𝑘𝐹
3 liminfvaluz3.5 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3feqmptdf 6717 . . 3 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
54fveq2d 6656 . 2 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
6 liminfvaluz3.1 . . 3 𝑘𝜑
7 liminfvaluz3.3 . . 3 (𝜑𝑀 ∈ ℤ)
8 liminfvaluz3.4 . . 3 𝑍 = (ℤ𝑀)
93ffvelrnda 6833 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
106, 7, 8, 9liminfvaluz 42374 . 2 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
115, 10eqtrd 2857 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wnf 1785  wcel 2114  wnfc 2960  cmpt 5122  wf 6330  cfv 6334  *cxr 10663  cz 11969  cuz 12231  -𝑒cxne 12492  lim supclsp 14818  lim infclsi 42333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-xneg 12495  df-ico 12732  df-limsup 14819  df-liminf 42334
This theorem is referenced by:  liminflbuz2  42397  liminfpnfuz  42398
  Copyright terms: Public domain W3C validator