| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumf1o | Structured version Visualization version GIF version | ||
| Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| Ref | Expression |
|---|---|
| esumf1o.0 | ⊢ Ⅎ𝑛𝜑 |
| esumf1o.b | ⊢ Ⅎ𝑛𝐵 |
| esumf1o.d | ⊢ Ⅎ𝑘𝐷 |
| esumf1o.a | ⊢ Ⅎ𝑛𝐴 |
| esumf1o.c | ⊢ Ⅎ𝑛𝐶 |
| esumf1o.f | ⊢ Ⅎ𝑛𝐹 |
| esumf1o.1 | ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
| esumf1o.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumf1o.3 | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| esumf1o.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
| esumf1o.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| esumf1o | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0base 32952 | . . . . 5 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | xrge0cmn 21325 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 4 | xrge0tps 33932 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 6 | esumf1o.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | esumf1o.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 8 | 7 | fmpttd 7087 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 9 | esumf1o.3 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
| 10 | 1, 3, 5, 6, 8, 9 | tsmsf1o 24032 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹))) |
| 11 | esumf1o.b | . . . . . 6 ⊢ Ⅎ𝑛𝐵 | |
| 12 | esumf1o.d | . . . . . 6 ⊢ Ⅎ𝑘𝐷 | |
| 13 | esumf1o.c | . . . . . 6 ⊢ Ⅎ𝑛𝐶 | |
| 14 | esumf1o.a | . . . . . 6 ⊢ Ⅎ𝑛𝐴 | |
| 15 | esumf1o.0 | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 16 | esumf1o.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | |
| 17 | f1of 6800 | . . . . . . . . . . 11 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
| 18 | 9, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
| 19 | 18 | ffvelcdmda 7056 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
| 20 | 16, 19 | eqeltrrd 2829 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) |
| 21 | 20 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 → 𝐺 ∈ 𝐴)) |
| 22 | 15, 21 | ralrimi 3235 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐶 𝐺 ∈ 𝐴) |
| 23 | esumf1o.f | . . . . . . . 8 ⊢ Ⅎ𝑛𝐹 | |
| 24 | 13, 23, 18 | feqmptdf 6931 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛))) |
| 25 | 15, 16 | mpteq2da 5199 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
| 26 | 24, 25 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
| 27 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 28 | esumf1o.1 | . . . . . 6 ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | |
| 29 | 11, 12, 13, 14, 15, 22, 26, 27, 28 | fmptcof2 32581 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹) = (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 30 | 29 | oveq2d 7403 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 31 | 10, 30 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 32 | 31 | unieqd 4884 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 33 | df-esum 34018 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 34 | df-esum 34018 | . 2 ⊢ Σ*𝑛 ∈ 𝐶𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷)) | |
| 35 | 32, 33, 34 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∪ cuni 4871 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 ↾s cress 17200 ℝ*𝑠cxrs 17463 CMndccmn 19710 TopSpctps 22819 tsums ctsu 24013 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-xadd 13073 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-tset 17239 df-ple 17240 df-ds 17242 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-ordt 17464 df-xrs 17465 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-cntz 19249 df-cmn 19712 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-ntr 22907 df-nei 22985 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tsms 24014 df-esum 34018 |
| This theorem is referenced by: esumc 34041 esumiun 34084 volmeas 34221 |
| Copyright terms: Public domain | W3C validator |