Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumf1o Structured version   Visualization version   GIF version

Theorem esumf1o 31419
Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
esumf1o.0 𝑛𝜑
esumf1o.b 𝑛𝐵
esumf1o.d 𝑘𝐷
esumf1o.a 𝑛𝐴
esumf1o.c 𝑛𝐶
esumf1o.f 𝑛𝐹
esumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
esumf1o.2 (𝜑𝐴𝑉)
esumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
esumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
esumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumf1o (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem esumf1o
StepHypRef Expression
1 xrge0base 30719 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0cmn 20133 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
32a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
4 xrge0tps 31295 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
54a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
6 esumf1o.2 . . . . 5 (𝜑𝐴𝑉)
7 esumf1o.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
87fmpttd 6856 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
9 esumf1o.3 . . . . 5 (𝜑𝐹:𝐶1-1-onto𝐴)
101, 3, 5, 6, 8, 9tsmsf1o 22750 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)))
11 esumf1o.b . . . . . 6 𝑛𝐵
12 esumf1o.d . . . . . 6 𝑘𝐷
13 esumf1o.c . . . . . 6 𝑛𝐶
14 esumf1o.a . . . . . 6 𝑛𝐴
15 esumf1o.0 . . . . . 6 𝑛𝜑
16 esumf1o.4 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
17 f1of 6590 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
189, 17syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐶𝐴)
1918ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
2016, 19eqeltrrd 2891 . . . . . . . 8 ((𝜑𝑛𝐶) → 𝐺𝐴)
2120ex 416 . . . . . . 7 (𝜑 → (𝑛𝐶𝐺𝐴))
2215, 21ralrimi 3180 . . . . . 6 (𝜑 → ∀𝑛𝐶 𝐺𝐴)
23 esumf1o.f . . . . . . . 8 𝑛𝐹
2413, 23, 18feqmptdf 6710 . . . . . . 7 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
2515, 16mpteq2da 5124 . . . . . . 7 (𝜑 → (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶𝐺))
2624, 25eqtrd 2833 . . . . . 6 (𝜑𝐹 = (𝑛𝐶𝐺))
27 eqidd 2799 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
28 esumf1o.1 . . . . . 6 (𝑘 = 𝐺𝐵 = 𝐷)
2911, 12, 13, 14, 15, 22, 26, 27, 28fmptcof2 30420 . . . . 5 (𝜑 → ((𝑘𝐴𝐵) ∘ 𝐹) = (𝑛𝐶𝐷))
3029oveq2d 7151 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3110, 30eqtrd 2833 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3231unieqd 4814 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
33 df-esum 31397 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
34 df-esum 31397 . 2 Σ*𝑛𝐶𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷))
3532, 33, 343eqtr4g 2858 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936   cuni 4800  cmpt 5110  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  s cress 16476  *𝑠cxrs 16765  CMndccmn 18898  TopSpctps 21537   tsums ctsu 22731  Σ*cesum 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-ordt 16766  df-xrs 16767  df-ps 17802  df-tsr 17803  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-cntz 18439  df-cmn 18900  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-nei 21703  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tsms 22732  df-esum 31397
This theorem is referenced by:  esumc  31420  esumiun  31463  volmeas  31600
  Copyright terms: Public domain W3C validator