Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumf1o | Structured version Visualization version GIF version |
Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
esumf1o.0 | ⊢ Ⅎ𝑛𝜑 |
esumf1o.b | ⊢ Ⅎ𝑛𝐵 |
esumf1o.d | ⊢ Ⅎ𝑘𝐷 |
esumf1o.a | ⊢ Ⅎ𝑛𝐴 |
esumf1o.c | ⊢ Ⅎ𝑛𝐶 |
esumf1o.f | ⊢ Ⅎ𝑛𝐹 |
esumf1o.1 | ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
esumf1o.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumf1o.3 | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
esumf1o.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
esumf1o.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumf1o | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0base 31196 | . . . . 5 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | xrge0cmn 20552 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
4 | xrge0tps 31794 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
6 | esumf1o.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | esumf1o.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
8 | 7 | fmpttd 6971 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
9 | esumf1o.3 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
10 | 1, 3, 5, 6, 8, 9 | tsmsf1o 23204 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹))) |
11 | esumf1o.b | . . . . . 6 ⊢ Ⅎ𝑛𝐵 | |
12 | esumf1o.d | . . . . . 6 ⊢ Ⅎ𝑘𝐷 | |
13 | esumf1o.c | . . . . . 6 ⊢ Ⅎ𝑛𝐶 | |
14 | esumf1o.a | . . . . . 6 ⊢ Ⅎ𝑛𝐴 | |
15 | esumf1o.0 | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
16 | esumf1o.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | |
17 | f1of 6700 | . . . . . . . . . . 11 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
18 | 9, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
19 | 18 | ffvelrnda 6943 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
20 | 16, 19 | eqeltrrd 2840 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) |
21 | 20 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 → 𝐺 ∈ 𝐴)) |
22 | 15, 21 | ralrimi 3139 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐶 𝐺 ∈ 𝐴) |
23 | esumf1o.f | . . . . . . . 8 ⊢ Ⅎ𝑛𝐹 | |
24 | 13, 23, 18 | feqmptdf 6821 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛))) |
25 | 15, 16 | mpteq2da 5168 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
26 | 24, 25 | eqtrd 2778 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
27 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
28 | esumf1o.1 | . . . . . 6 ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | |
29 | 11, 12, 13, 14, 15, 22, 26, 27, 28 | fmptcof2 30896 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹) = (𝑛 ∈ 𝐶 ↦ 𝐷)) |
30 | 29 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
31 | 10, 30 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
32 | 31 | unieqd 4850 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
33 | df-esum 31896 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
34 | df-esum 31896 | . 2 ⊢ Σ*𝑛 ∈ 𝐶𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷)) | |
35 | 32, 33, 34 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ∪ cuni 4836 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 ↾s cress 16867 ℝ*𝑠cxrs 17128 CMndccmn 19301 TopSpctps 21989 tsums ctsu 23185 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: esumc 31919 esumiun 31962 volmeas 32099 |
Copyright terms: Public domain | W3C validator |