Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumf1o Structured version   Visualization version   GIF version

Theorem esumf1o 33036
Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
esumf1o.0 𝑛𝜑
esumf1o.b 𝑛𝐵
esumf1o.d 𝑘𝐷
esumf1o.a 𝑛𝐴
esumf1o.c 𝑛𝐶
esumf1o.f 𝑛𝐹
esumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
esumf1o.2 (𝜑𝐴𝑉)
esumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
esumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
esumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumf1o (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem esumf1o
StepHypRef Expression
1 xrge0base 32173 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0cmn 20979 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
32a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
4 xrge0tps 32910 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
54a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
6 esumf1o.2 . . . . 5 (𝜑𝐴𝑉)
7 esumf1o.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
87fmpttd 7111 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
9 esumf1o.3 . . . . 5 (𝜑𝐹:𝐶1-1-onto𝐴)
101, 3, 5, 6, 8, 9tsmsf1o 23640 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)))
11 esumf1o.b . . . . . 6 𝑛𝐵
12 esumf1o.d . . . . . 6 𝑘𝐷
13 esumf1o.c . . . . . 6 𝑛𝐶
14 esumf1o.a . . . . . 6 𝑛𝐴
15 esumf1o.0 . . . . . 6 𝑛𝜑
16 esumf1o.4 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
17 f1of 6830 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
189, 17syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐶𝐴)
1918ffvelcdmda 7083 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
2016, 19eqeltrrd 2834 . . . . . . . 8 ((𝜑𝑛𝐶) → 𝐺𝐴)
2120ex 413 . . . . . . 7 (𝜑 → (𝑛𝐶𝐺𝐴))
2215, 21ralrimi 3254 . . . . . 6 (𝜑 → ∀𝑛𝐶 𝐺𝐴)
23 esumf1o.f . . . . . . . 8 𝑛𝐹
2413, 23, 18feqmptdf 6959 . . . . . . 7 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
2515, 16mpteq2da 5245 . . . . . . 7 (𝜑 → (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶𝐺))
2624, 25eqtrd 2772 . . . . . 6 (𝜑𝐹 = (𝑛𝐶𝐺))
27 eqidd 2733 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
28 esumf1o.1 . . . . . 6 (𝑘 = 𝐺𝐵 = 𝐷)
2911, 12, 13, 14, 15, 22, 26, 27, 28fmptcof2 31869 . . . . 5 (𝜑 → ((𝑘𝐴𝐵) ∘ 𝐹) = (𝑛𝐶𝐷))
3029oveq2d 7421 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3110, 30eqtrd 2772 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3231unieqd 4921 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
33 df-esum 33014 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
34 df-esum 33014 . 2 Σ*𝑛𝐶𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷))
3532, 33, 343eqtr4g 2797 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883   cuni 4907  cmpt 5230  ccom 5679  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  s cress 17169  *𝑠cxrs 17442  CMndccmn 19642  TopSpctps 22425   tsums ctsu 23621  Σ*cesum 33013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-xadd 13089  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-tset 17212  df-ple 17213  df-ds 17215  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-ordt 17443  df-xrs 17444  df-ps 18515  df-tsr 18516  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-cntz 19175  df-cmn 19644  df-fbas 20933  df-fg 20934  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-ntr 22515  df-nei 22593  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-tsms 23622  df-esum 33014
This theorem is referenced by:  esumc  33037  esumiun  33080  volmeas  33217
  Copyright terms: Public domain W3C validator