| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumf1o | Structured version Visualization version GIF version | ||
| Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| Ref | Expression |
|---|---|
| esumf1o.0 | ⊢ Ⅎ𝑛𝜑 |
| esumf1o.b | ⊢ Ⅎ𝑛𝐵 |
| esumf1o.d | ⊢ Ⅎ𝑘𝐷 |
| esumf1o.a | ⊢ Ⅎ𝑛𝐴 |
| esumf1o.c | ⊢ Ⅎ𝑛𝐶 |
| esumf1o.f | ⊢ Ⅎ𝑛𝐹 |
| esumf1o.1 | ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
| esumf1o.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumf1o.3 | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| esumf1o.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
| esumf1o.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| esumf1o | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0base 17511 | . . . . 5 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | xrge0cmn 21351 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 4 | xrge0tps 33909 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 6 | esumf1o.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | esumf1o.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 8 | 7 | fmpttd 7049 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 9 | esumf1o.3 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
| 10 | 1, 3, 5, 6, 8, 9 | tsmsf1o 24030 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹))) |
| 11 | esumf1o.b | . . . . . 6 ⊢ Ⅎ𝑛𝐵 | |
| 12 | esumf1o.d | . . . . . 6 ⊢ Ⅎ𝑘𝐷 | |
| 13 | esumf1o.c | . . . . . 6 ⊢ Ⅎ𝑛𝐶 | |
| 14 | esumf1o.a | . . . . . 6 ⊢ Ⅎ𝑛𝐴 | |
| 15 | esumf1o.0 | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 16 | esumf1o.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | |
| 17 | f1of 6764 | . . . . . . . . . . 11 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
| 18 | 9, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
| 19 | 18 | ffvelcdmda 7018 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
| 20 | 16, 19 | eqeltrrd 2829 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) |
| 21 | 20 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 → 𝐺 ∈ 𝐴)) |
| 22 | 15, 21 | ralrimi 3227 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐶 𝐺 ∈ 𝐴) |
| 23 | esumf1o.f | . . . . . . . 8 ⊢ Ⅎ𝑛𝐹 | |
| 24 | 13, 23, 18 | feqmptdf 6893 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛))) |
| 25 | 15, 16 | mpteq2da 5184 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
| 26 | 24, 25 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ 𝐺)) |
| 27 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 28 | esumf1o.1 | . . . . . 6 ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | |
| 29 | 11, 12, 13, 14, 15, 22, 26, 27, 28 | fmptcof2 32600 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹) = (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 30 | 29 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝐹)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 31 | 10, 30 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 32 | 31 | unieqd 4871 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 33 | df-esum 33995 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 34 | df-esum 33995 | . 2 ⊢ Σ*𝑛 ∈ 𝐶𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑛 ∈ 𝐶 ↦ 𝐷)) | |
| 35 | 32, 33, 34 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∪ cuni 4858 ↦ cmpt 5173 ∘ ccom 5623 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 [,]cicc 13251 ↾s cress 17141 ℝ*𝑠cxrs 17404 CMndccmn 19659 TopSpctps 22817 tsums ctsu 24011 Σ*cesum 33994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-xadd 13015 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-cntz 19196 df-cmn 19661 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-ntr 22905 df-nei 22983 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-esum 33995 |
| This theorem is referenced by: esumc 34018 esumiun 34061 volmeas 34198 |
| Copyright terms: Public domain | W3C validator |