MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7092
Description: A version of fmptd 7089 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3236 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7085 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3045  cmpt 5191  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  elrspunidl  33406  gsumesum  34056  voliune  34226  sdclem2  37743  fmptd2f  45236  limsupubuzmpt  45724  xlimmnfmpt  45848  xlimpnfmpt  45849  cncfiooicclem1  45898  stoweidlem35  46040  stoweidlem42  46047  stoweidlem48  46053  stirlinglem8  46086  sge0revalmpt  46383  sge0gerpmpt  46407  sge0ssrempt  46410  sge0ltfirpmpt  46413  sge0lempt  46415  sge0splitmpt  46416  sge0ss  46417  sge0rernmpt  46427  sge0lefimpt  46428  sge0clmpt  46430  sge0ltfirpmpt2  46431  sge0isummpt  46435  sge0xadd  46440  sge0fsummptf  46441  sge0snmptf  46442  sge0ge0mpt  46443  sge0repnfmpt  46444  sge0pnffigtmpt  46445  sge0gtfsumgt  46448  sge0pnfmpt  46450  meadjiun  46471  meaiunlelem  46473  omeiunle  46522  omeiunlempt  46525  opnvonmbllem1  46637  hoimbl2  46670  vonhoire  46677  vonn0ioo2  46695  vonn0icc2  46697  issmfdmpt  46753  smfconst  46754  smfadd  46770  smfpimcclem  46812  smflimmpt  46815  smflimsuplem2  46826  gsumsplit2f  48172  fsuppmptdmf  48370
  Copyright terms: Public domain W3C validator