MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7071
Description: A version of fmptd 7068 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3233 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7064 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  cmpt 5183  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503
This theorem is referenced by:  elrspunidl  33372  gsumesum  34022  voliune  34192  sdclem2  37709  fmptd2f  45202  limsupubuzmpt  45690  xlimmnfmpt  45814  xlimpnfmpt  45815  cncfiooicclem1  45864  stoweidlem35  46006  stoweidlem42  46013  stoweidlem48  46019  stirlinglem8  46052  sge0revalmpt  46349  sge0gerpmpt  46373  sge0ssrempt  46376  sge0ltfirpmpt  46379  sge0lempt  46381  sge0splitmpt  46382  sge0ss  46383  sge0rernmpt  46393  sge0lefimpt  46394  sge0clmpt  46396  sge0ltfirpmpt2  46397  sge0isummpt  46401  sge0xadd  46406  sge0fsummptf  46407  sge0snmptf  46408  sge0ge0mpt  46409  sge0repnfmpt  46410  sge0pnffigtmpt  46411  sge0gtfsumgt  46414  sge0pnfmpt  46416  meadjiun  46437  meaiunlelem  46439  omeiunle  46488  omeiunlempt  46491  opnvonmbllem1  46603  hoimbl2  46636  vonhoire  46643  vonn0ioo2  46661  vonn0icc2  46663  issmfdmpt  46719  smfconst  46720  smfadd  46736  smfpimcclem  46778  smflimmpt  46781  smflimsuplem2  46792  gsumsplit2f  48141  fsuppmptdmf  48339
  Copyright terms: Public domain W3C validator