MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7055
Description: A version of fmptd 7052 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3227 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7048 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  cmpt 5176  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  elrspunidl  33384  gsumesum  34045  voliune  34215  sdclem2  37741  fmptd2f  45233  limsupubuzmpt  45720  xlimmnfmpt  45844  xlimpnfmpt  45845  cncfiooicclem1  45894  stoweidlem35  46036  stoweidlem42  46043  stoweidlem48  46049  stirlinglem8  46082  sge0revalmpt  46379  sge0gerpmpt  46403  sge0ssrempt  46406  sge0ltfirpmpt  46409  sge0lempt  46411  sge0splitmpt  46412  sge0ss  46413  sge0rernmpt  46423  sge0lefimpt  46424  sge0clmpt  46426  sge0ltfirpmpt2  46427  sge0isummpt  46431  sge0xadd  46436  sge0fsummptf  46437  sge0snmptf  46438  sge0ge0mpt  46439  sge0repnfmpt  46440  sge0pnffigtmpt  46441  sge0gtfsumgt  46444  sge0pnfmpt  46446  meadjiun  46467  meaiunlelem  46469  omeiunle  46518  omeiunlempt  46521  opnvonmbllem1  46633  hoimbl2  46666  vonhoire  46673  vonn0ioo2  46691  vonn0icc2  46693  issmfdmpt  46749  smfconst  46750  smfadd  46766  smfpimcclem  46808  smflimmpt  46811  smflimsuplem2  46822  gsumsplit2f  48184  fsuppmptdmf  48382
  Copyright terms: Public domain W3C validator