| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version | ||
| Description: A version of fmptd 7068 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | ralrimi 3233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fmpt 7064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: elrspunidl 33372 gsumesum 34022 voliune 34192 sdclem2 37709 fmptd2f 45202 limsupubuzmpt 45690 xlimmnfmpt 45814 xlimpnfmpt 45815 cncfiooicclem1 45864 stoweidlem35 46006 stoweidlem42 46013 stoweidlem48 46019 stirlinglem8 46052 sge0revalmpt 46349 sge0gerpmpt 46373 sge0ssrempt 46376 sge0ltfirpmpt 46379 sge0lempt 46381 sge0splitmpt 46382 sge0ss 46383 sge0rernmpt 46393 sge0lefimpt 46394 sge0clmpt 46396 sge0ltfirpmpt2 46397 sge0isummpt 46401 sge0xadd 46406 sge0fsummptf 46407 sge0snmptf 46408 sge0ge0mpt 46409 sge0repnfmpt 46410 sge0pnffigtmpt 46411 sge0gtfsumgt 46414 sge0pnfmpt 46416 meadjiun 46437 meaiunlelem 46439 omeiunle 46488 omeiunlempt 46491 opnvonmbllem1 46603 hoimbl2 46636 vonhoire 46643 vonn0ioo2 46661 vonn0icc2 46663 issmfdmpt 46719 smfconst 46720 smfadd 46736 smfpimcclem 46778 smflimmpt 46781 smflimsuplem2 46792 gsumsplit2f 48141 fsuppmptdmf 48339 |
| Copyright terms: Public domain | W3C validator |