MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 6934
Description: A version of fmptd 6931 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 416 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3137 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 6927 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 221 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  wral 3061  cmpt 5135  wf 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-fun 6382  df-fn 6383  df-f 6384
This theorem is referenced by:  elrspunidl  31320  gsumesum  31739  voliune  31909  sdclem2  35637  fmptd2f  42451  limsupubuzmpt  42935  xlimmnfmpt  43059  xlimpnfmpt  43060  cncfiooicclem1  43109  dvnprodlem1  43162  stoweidlem35  43251  stoweidlem42  43258  stoweidlem48  43264  stirlinglem8  43297  sge0revalmpt  43591  sge0f1o  43595  sge0gerpmpt  43615  sge0ssrempt  43618  sge0ltfirpmpt  43621  sge0lempt  43623  sge0splitmpt  43624  sge0ss  43625  sge0rernmpt  43635  sge0lefimpt  43636  sge0clmpt  43638  sge0ltfirpmpt2  43639  sge0isummpt  43643  sge0xadd  43648  sge0fsummptf  43649  sge0snmptf  43650  sge0ge0mpt  43651  sge0repnfmpt  43652  sge0pnffigtmpt  43653  sge0gtfsumgt  43656  sge0pnfmpt  43658  meadjiun  43679  meaiunlelem  43681  omeiunle  43730  omeiunlempt  43733  opnvonmbllem1  43845  hoimbl2  43878  vonhoire  43885  vonn0ioo2  43903  vonn0icc2  43905  pimgtmnf  43931  issmfdmpt  43956  smfconst  43957  smfadd  43972  smfpimcclem  44012  smflimmpt  44015  smfsupmpt  44020  smfinfmpt  44024  smflimsuplem2  44026  gsumsplit2f  45047  fsuppmptdmf  45390
  Copyright terms: Public domain W3C validator