| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version | ||
| Description: A version of fmptd 7056 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | ralrimi 3231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fmpt 7052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 ↦ cmpt 5176 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: elrspunidl 33437 gsumesum 34144 voliune 34314 sdclem2 37855 fmptd2f 45395 limsupubuzmpt 45879 xlimmnfmpt 46003 xlimpnfmpt 46004 cncfiooicclem1 46053 stoweidlem35 46195 stoweidlem42 46202 stoweidlem48 46208 stirlinglem8 46241 sge0revalmpt 46538 sge0gerpmpt 46562 sge0ssrempt 46565 sge0ltfirpmpt 46568 sge0lempt 46570 sge0splitmpt 46571 sge0ss 46572 sge0rernmpt 46582 sge0lefimpt 46583 sge0clmpt 46585 sge0ltfirpmpt2 46586 sge0isummpt 46590 sge0xadd 46595 sge0fsummptf 46596 sge0snmptf 46597 sge0ge0mpt 46598 sge0repnfmpt 46599 sge0pnffigtmpt 46600 sge0gtfsumgt 46603 sge0pnfmpt 46605 meadjiun 46626 meaiunlelem 46628 omeiunle 46677 omeiunlempt 46680 opnvonmbllem1 46792 hoimbl2 46825 vonhoire 46832 vonn0ioo2 46850 vonn0icc2 46852 issmfdmpt 46908 smfconst 46909 smfadd 46925 smfpimcclem 46967 smflimmpt 46970 smflimsuplem2 46981 gsumsplit2f 48342 fsuppmptdmf 48540 |
| Copyright terms: Public domain | W3C validator |