MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7106
Description: A version of fmptd 7103 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3240 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7099 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3051  cmpt 5201  wf 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6532  df-fn 6533  df-f 6534
This theorem is referenced by:  elrspunidl  33389  gsumesum  34036  voliune  34206  sdclem2  37712  fmptd2f  45207  limsupubuzmpt  45696  xlimmnfmpt  45820  xlimpnfmpt  45821  cncfiooicclem1  45870  stoweidlem35  46012  stoweidlem42  46019  stoweidlem48  46025  stirlinglem8  46058  sge0revalmpt  46355  sge0gerpmpt  46379  sge0ssrempt  46382  sge0ltfirpmpt  46385  sge0lempt  46387  sge0splitmpt  46388  sge0ss  46389  sge0rernmpt  46399  sge0lefimpt  46400  sge0clmpt  46402  sge0ltfirpmpt2  46403  sge0isummpt  46407  sge0xadd  46412  sge0fsummptf  46413  sge0snmptf  46414  sge0ge0mpt  46415  sge0repnfmpt  46416  sge0pnffigtmpt  46417  sge0gtfsumgt  46420  sge0pnfmpt  46422  meadjiun  46443  meaiunlelem  46445  omeiunle  46494  omeiunlempt  46497  opnvonmbllem1  46609  hoimbl2  46642  vonhoire  46649  vonn0ioo2  46667  vonn0icc2  46669  issmfdmpt  46725  smfconst  46726  smfadd  46742  smfpimcclem  46784  smflimmpt  46787  smflimsuplem2  46798  gsumsplit2f  48103  fsuppmptdmf  48301
  Copyright terms: Public domain W3C validator