MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7059
Description: A version of fmptd 7056 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3231 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7052 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wral 3048  cmpt 5176  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  elrspunidl  33437  gsumesum  34144  voliune  34314  sdclem2  37855  fmptd2f  45395  limsupubuzmpt  45879  xlimmnfmpt  46003  xlimpnfmpt  46004  cncfiooicclem1  46053  stoweidlem35  46195  stoweidlem42  46202  stoweidlem48  46208  stirlinglem8  46241  sge0revalmpt  46538  sge0gerpmpt  46562  sge0ssrempt  46565  sge0ltfirpmpt  46568  sge0lempt  46570  sge0splitmpt  46571  sge0ss  46572  sge0rernmpt  46582  sge0lefimpt  46583  sge0clmpt  46585  sge0ltfirpmpt2  46586  sge0isummpt  46590  sge0xadd  46595  sge0fsummptf  46596  sge0snmptf  46597  sge0ge0mpt  46598  sge0repnfmpt  46599  sge0pnffigtmpt  46600  sge0gtfsumgt  46603  sge0pnfmpt  46605  meadjiun  46626  meaiunlelem  46628  omeiunle  46677  omeiunlempt  46680  opnvonmbllem1  46792  hoimbl2  46825  vonhoire  46832  vonn0ioo2  46850  vonn0icc2  46852  issmfdmpt  46908  smfconst  46909  smfadd  46925  smfpimcclem  46967  smflimmpt  46970  smflimsuplem2  46981  gsumsplit2f  48342  fsuppmptdmf  48540
  Copyright terms: Public domain W3C validator