| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version | ||
| Description: A version of fmptd 7052 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | ralrimi 3227 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fmpt 7048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5176 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: elrspunidl 33384 gsumesum 34045 voliune 34215 sdclem2 37741 fmptd2f 45233 limsupubuzmpt 45720 xlimmnfmpt 45844 xlimpnfmpt 45845 cncfiooicclem1 45894 stoweidlem35 46036 stoweidlem42 46043 stoweidlem48 46049 stirlinglem8 46082 sge0revalmpt 46379 sge0gerpmpt 46403 sge0ssrempt 46406 sge0ltfirpmpt 46409 sge0lempt 46411 sge0splitmpt 46412 sge0ss 46413 sge0rernmpt 46423 sge0lefimpt 46424 sge0clmpt 46426 sge0ltfirpmpt2 46427 sge0isummpt 46431 sge0xadd 46436 sge0fsummptf 46437 sge0snmptf 46438 sge0ge0mpt 46439 sge0repnfmpt 46440 sge0pnffigtmpt 46441 sge0gtfsumgt 46444 sge0pnfmpt 46446 meadjiun 46467 meaiunlelem 46469 omeiunle 46518 omeiunlempt 46521 opnvonmbllem1 46633 hoimbl2 46666 vonhoire 46673 vonn0ioo2 46691 vonn0icc2 46693 issmfdmpt 46749 smfconst 46750 smfadd 46766 smfpimcclem 46808 smflimmpt 46811 smflimsuplem2 46822 gsumsplit2f 48184 fsuppmptdmf 48382 |
| Copyright terms: Public domain | W3C validator |