| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version | ||
| Description: A version of fmptd 7103 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | ralrimi 3240 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fmpt 7099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: elrspunidl 33389 gsumesum 34036 voliune 34206 sdclem2 37712 fmptd2f 45207 limsupubuzmpt 45696 xlimmnfmpt 45820 xlimpnfmpt 45821 cncfiooicclem1 45870 stoweidlem35 46012 stoweidlem42 46019 stoweidlem48 46025 stirlinglem8 46058 sge0revalmpt 46355 sge0gerpmpt 46379 sge0ssrempt 46382 sge0ltfirpmpt 46385 sge0lempt 46387 sge0splitmpt 46388 sge0ss 46389 sge0rernmpt 46399 sge0lefimpt 46400 sge0clmpt 46402 sge0ltfirpmpt2 46403 sge0isummpt 46407 sge0xadd 46412 sge0fsummptf 46413 sge0snmptf 46414 sge0ge0mpt 46415 sge0repnfmpt 46416 sge0pnffigtmpt 46417 sge0gtfsumgt 46420 sge0pnfmpt 46422 meadjiun 46443 meaiunlelem 46445 omeiunle 46494 omeiunlempt 46497 opnvonmbllem1 46609 hoimbl2 46642 vonhoire 46649 vonn0ioo2 46667 vonn0icc2 46669 issmfdmpt 46725 smfconst 46726 smfadd 46742 smfpimcclem 46784 smflimmpt 46787 smflimsuplem2 46798 gsumsplit2f 48103 fsuppmptdmf 48301 |
| Copyright terms: Public domain | W3C validator |