![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version |
Description: A version of fmptd 7148 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
4 | 1, 3 | ralrimi 3263 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | fmpt 7144 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: elrspunidl 33421 gsumesum 34023 voliune 34193 sdclem2 37702 fmptd2f 45142 limsupubuzmpt 45640 xlimmnfmpt 45764 xlimpnfmpt 45765 cncfiooicclem1 45814 dvnprodlem1 45867 stoweidlem35 45956 stoweidlem42 45963 stoweidlem48 45969 stirlinglem8 46002 sge0revalmpt 46299 sge0f1o 46303 sge0gerpmpt 46323 sge0ssrempt 46326 sge0ltfirpmpt 46329 sge0lempt 46331 sge0splitmpt 46332 sge0ss 46333 sge0rernmpt 46343 sge0lefimpt 46344 sge0clmpt 46346 sge0ltfirpmpt2 46347 sge0isummpt 46351 sge0xadd 46356 sge0fsummptf 46357 sge0snmptf 46358 sge0ge0mpt 46359 sge0repnfmpt 46360 sge0pnffigtmpt 46361 sge0gtfsumgt 46364 sge0pnfmpt 46366 meadjiun 46387 meaiunlelem 46389 omeiunle 46438 omeiunlempt 46441 opnvonmbllem1 46553 hoimbl2 46586 vonhoire 46593 vonn0ioo2 46611 vonn0icc2 46613 issmfdmpt 46669 smfconst 46670 smfadd 46686 smfpimcclem 46728 smflimmpt 46731 smfinfmpt 46740 smflimsuplem2 46742 gsumsplit2f 47903 fsuppmptdmf 48106 |
Copyright terms: Public domain | W3C validator |