MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7137
Description: A version of fmptd 7134 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3257 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7130 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  cmpt 5225  wf 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565
This theorem is referenced by:  elrspunidl  33456  gsumesum  34060  voliune  34230  sdclem2  37749  fmptd2f  45240  limsupubuzmpt  45734  xlimmnfmpt  45858  xlimpnfmpt  45859  cncfiooicclem1  45908  stoweidlem35  46050  stoweidlem42  46057  stoweidlem48  46063  stirlinglem8  46096  sge0revalmpt  46393  sge0gerpmpt  46417  sge0ssrempt  46420  sge0ltfirpmpt  46423  sge0lempt  46425  sge0splitmpt  46426  sge0ss  46427  sge0rernmpt  46437  sge0lefimpt  46438  sge0clmpt  46440  sge0ltfirpmpt2  46441  sge0isummpt  46445  sge0xadd  46450  sge0fsummptf  46451  sge0snmptf  46452  sge0ge0mpt  46453  sge0repnfmpt  46454  sge0pnffigtmpt  46455  sge0gtfsumgt  46458  sge0pnfmpt  46460  meadjiun  46481  meaiunlelem  46483  omeiunle  46532  omeiunlempt  46535  opnvonmbllem1  46647  hoimbl2  46680  vonhoire  46687  vonn0ioo2  46705  vonn0icc2  46707  issmfdmpt  46763  smfconst  46764  smfadd  46780  smfpimcclem  46822  smflimmpt  46825  smflimsuplem2  46836  gsumsplit2f  48096  fsuppmptdmf  48294
  Copyright terms: Public domain W3C validator