MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 6991
Description: A version of fmptd 6988 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 413 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3141 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 6984 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 217 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  cmpt 5157  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  elrspunidl  31606  gsumesum  32027  voliune  32197  sdclem2  35900  fmptd2f  42778  limsupubuzmpt  43260  xlimmnfmpt  43384  xlimpnfmpt  43385  cncfiooicclem1  43434  dvnprodlem1  43487  stoweidlem35  43576  stoweidlem42  43583  stoweidlem48  43589  stirlinglem8  43622  sge0revalmpt  43916  sge0f1o  43920  sge0gerpmpt  43940  sge0ssrempt  43943  sge0ltfirpmpt  43946  sge0lempt  43948  sge0splitmpt  43949  sge0ss  43950  sge0rernmpt  43960  sge0lefimpt  43961  sge0clmpt  43963  sge0ltfirpmpt2  43964  sge0isummpt  43968  sge0xadd  43973  sge0fsummptf  43974  sge0snmptf  43975  sge0ge0mpt  43976  sge0repnfmpt  43977  sge0pnffigtmpt  43978  sge0gtfsumgt  43981  sge0pnfmpt  43983  meadjiun  44004  meaiunlelem  44006  omeiunle  44055  omeiunlempt  44058  opnvonmbllem1  44170  hoimbl2  44203  vonhoire  44210  vonn0ioo2  44228  vonn0icc2  44230  pimgtmnf  44259  issmfdmpt  44284  smfconst  44285  smfadd  44300  smfpimcclem  44340  smflimmpt  44343  smfinfmpt  44352  smflimsuplem2  44354  gsumsplit2f  45374  fsuppmptdmf  45717
  Copyright terms: Public domain W3C validator