| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version | ||
| Description: A version of fmptd 7042 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
| fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | ralrimi 3230 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fmpt 7038 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 7 | 4, 6 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5167 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: elrspunidl 33385 gsumesum 34064 voliune 34234 sdclem2 37782 fmptd2f 45272 limsupubuzmpt 45757 xlimmnfmpt 45881 xlimpnfmpt 45882 cncfiooicclem1 45931 stoweidlem35 46073 stoweidlem42 46080 stoweidlem48 46086 stirlinglem8 46119 sge0revalmpt 46416 sge0gerpmpt 46440 sge0ssrempt 46443 sge0ltfirpmpt 46446 sge0lempt 46448 sge0splitmpt 46449 sge0ss 46450 sge0rernmpt 46460 sge0lefimpt 46461 sge0clmpt 46463 sge0ltfirpmpt2 46464 sge0isummpt 46468 sge0xadd 46473 sge0fsummptf 46474 sge0snmptf 46475 sge0ge0mpt 46476 sge0repnfmpt 46477 sge0pnffigtmpt 46478 sge0gtfsumgt 46481 sge0pnfmpt 46483 meadjiun 46504 meaiunlelem 46506 omeiunle 46555 omeiunlempt 46558 opnvonmbllem1 46670 hoimbl2 46703 vonhoire 46710 vonn0ioo2 46728 vonn0icc2 46730 issmfdmpt 46786 smfconst 46787 smfadd 46803 smfpimcclem 46845 smflimmpt 46848 smflimsuplem2 46859 gsumsplit2f 48211 fsuppmptdmf 48409 |
| Copyright terms: Public domain | W3C validator |