MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7114
Description: A version of fmptd 7111 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 414 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3255 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7107 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 217 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wral 3062  cmpt 5231  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6543  df-fn 6544  df-f 6545
This theorem is referenced by:  elrspunidl  32535  gsumesum  33046  voliune  33216  sdclem2  36599  fmptd2f  43923  limsupubuzmpt  44422  xlimmnfmpt  44546  xlimpnfmpt  44547  cncfiooicclem1  44596  dvnprodlem1  44649  stoweidlem35  44738  stoweidlem42  44745  stoweidlem48  44751  stirlinglem8  44784  sge0revalmpt  45081  sge0f1o  45085  sge0gerpmpt  45105  sge0ssrempt  45108  sge0ltfirpmpt  45111  sge0lempt  45113  sge0splitmpt  45114  sge0ss  45115  sge0rernmpt  45125  sge0lefimpt  45126  sge0clmpt  45128  sge0ltfirpmpt2  45129  sge0isummpt  45133  sge0xadd  45138  sge0fsummptf  45139  sge0snmptf  45140  sge0ge0mpt  45141  sge0repnfmpt  45142  sge0pnffigtmpt  45143  sge0gtfsumgt  45146  sge0pnfmpt  45148  meadjiun  45169  meaiunlelem  45171  omeiunle  45220  omeiunlempt  45223  opnvonmbllem1  45335  hoimbl2  45368  vonhoire  45375  vonn0ioo2  45393  vonn0icc2  45395  issmfdmpt  45451  smfconst  45452  smfadd  45468  smfpimcclem  45510  smflimmpt  45513  smfinfmpt  45522  smflimsuplem2  45524  gsumsplit2f  46577  fsuppmptdmf  47011
  Copyright terms: Public domain W3C validator