Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version |
Description: A version of fmptd 6988 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
4 | 1, 3 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | fmpt 6984 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
7 | 4, 6 | sylib 217 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: elrspunidl 31606 gsumesum 32027 voliune 32197 sdclem2 35900 fmptd2f 42778 limsupubuzmpt 43260 xlimmnfmpt 43384 xlimpnfmpt 43385 cncfiooicclem1 43434 dvnprodlem1 43487 stoweidlem35 43576 stoweidlem42 43583 stoweidlem48 43589 stirlinglem8 43622 sge0revalmpt 43916 sge0f1o 43920 sge0gerpmpt 43940 sge0ssrempt 43943 sge0ltfirpmpt 43946 sge0lempt 43948 sge0splitmpt 43949 sge0ss 43950 sge0rernmpt 43960 sge0lefimpt 43961 sge0clmpt 43963 sge0ltfirpmpt2 43964 sge0isummpt 43968 sge0xadd 43973 sge0fsummptf 43974 sge0snmptf 43975 sge0ge0mpt 43976 sge0repnfmpt 43977 sge0pnffigtmpt 43978 sge0gtfsumgt 43981 sge0pnfmpt 43983 meadjiun 44004 meaiunlelem 44006 omeiunle 44055 omeiunlempt 44058 opnvonmbllem1 44170 hoimbl2 44203 vonhoire 44210 vonn0ioo2 44228 vonn0icc2 44230 pimgtmnf 44259 issmfdmpt 44284 smfconst 44285 smfadd 44300 smfpimcclem 44340 smflimmpt 44343 smfinfmpt 44352 smflimsuplem2 44354 gsumsplit2f 45374 fsuppmptdmf 45717 |
Copyright terms: Public domain | W3C validator |