MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Visualization version   GIF version

Theorem fmptdf 7089
Description: A version of fmptd 7086 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1 𝑥𝜑
fmptdf.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdf.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdf (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3 𝑥𝜑
2 fmptdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝐶))
41, 3ralrimi 3235 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5 fmptdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fmpt 7082 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
74, 6sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  cmpt 5188  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  elrspunidl  33399  gsumesum  34049  voliune  34219  sdclem2  37736  fmptd2f  45229  limsupubuzmpt  45717  xlimmnfmpt  45841  xlimpnfmpt  45842  cncfiooicclem1  45891  stoweidlem35  46033  stoweidlem42  46040  stoweidlem48  46046  stirlinglem8  46079  sge0revalmpt  46376  sge0gerpmpt  46400  sge0ssrempt  46403  sge0ltfirpmpt  46406  sge0lempt  46408  sge0splitmpt  46409  sge0ss  46410  sge0rernmpt  46420  sge0lefimpt  46421  sge0clmpt  46423  sge0ltfirpmpt2  46424  sge0isummpt  46428  sge0xadd  46433  sge0fsummptf  46434  sge0snmptf  46435  sge0ge0mpt  46436  sge0repnfmpt  46437  sge0pnffigtmpt  46438  sge0gtfsumgt  46441  sge0pnfmpt  46443  meadjiun  46464  meaiunlelem  46466  omeiunle  46515  omeiunlempt  46518  opnvonmbllem1  46630  hoimbl2  46663  vonhoire  46670  vonn0ioo2  46688  vonn0icc2  46690  issmfdmpt  46746  smfconst  46747  smfadd  46763  smfpimcclem  46805  smflimmpt  46808  smflimsuplem2  46819  gsumsplit2f  48168  fsuppmptdmf  48366
  Copyright terms: Public domain W3C validator