| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version | ||
| Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| supcnvlimsupmpt.j | ⊢ Ⅎ𝑗𝜑 |
| supcnvlimsupmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| supcnvlimsupmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| supcnvlimsupmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| supcnvlimsupmpt.r | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
| Ref | Expression |
|---|---|
| supcnvlimsupmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6906 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) = (ℤ≥‘𝑛)) | |
| 2 | 1 | mpteq1d 5237 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 3 | 2 | rneqd 5949 | . . . . 5 ⊢ (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 4 | 3 | supeq1d 9486 | . . . 4 ⊢ (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
| 5 | 4 | cbvmptv 5255 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
| 6 | supcnvlimsupmpt.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 6 | uzssd3 45437 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 9 | 8 | resmptd 6058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 10 | 9 | eqcomd 2743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
| 11 | 10 | rneqd 5949 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
| 12 | 11 | supeq1d 9486 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) |
| 13 | 12 | mpteq2dva 5242 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
| 14 | 5, 13 | eqtrid 2789 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
| 15 | supcnvlimsupmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 16 | supcnvlimsupmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
| 17 | supcnvlimsupmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 18 | 16, 17 | fmptd2f 45240 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 19 | supcnvlimsupmpt.r | . . 3 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) | |
| 20 | 15, 6, 18, 19 | supcnvlimsup 45755 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| 21 | 14, 20 | eqbrtrd 5165 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ↾ cres 5687 ‘cfv 6561 supcsup 9480 ℝcr 11154 ℝ*cxr 11294 < clt 11295 ℤcz 12613 ℤ≥cuz 12878 lim supclsp 15506 ⇝ cli 15520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fl 13832 df-ceil 13833 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 |
| This theorem is referenced by: smflimsuplem5 46839 |
| Copyright terms: Public domain | W3C validator |