| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version | ||
| Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| supcnvlimsupmpt.j | ⊢ Ⅎ𝑗𝜑 |
| supcnvlimsupmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| supcnvlimsupmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| supcnvlimsupmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| supcnvlimsupmpt.r | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
| Ref | Expression |
|---|---|
| supcnvlimsupmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) = (ℤ≥‘𝑛)) | |
| 2 | 1 | mpteq1d 5200 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 3 | 2 | rneqd 5905 | . . . . 5 ⊢ (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 4 | 3 | supeq1d 9404 | . . . 4 ⊢ (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
| 5 | 4 | cbvmptv 5214 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
| 6 | supcnvlimsupmpt.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 6 | uzssd3 45429 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 9 | 8 | resmptd 6014 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
| 10 | 9 | eqcomd 2736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
| 11 | 10 | rneqd 5905 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
| 12 | 11 | supeq1d 9404 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) |
| 13 | 12 | mpteq2dva 5203 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
| 14 | 5, 13 | eqtrid 2777 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
| 15 | supcnvlimsupmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 16 | supcnvlimsupmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
| 17 | supcnvlimsupmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 18 | 16, 17 | fmptd2f 45236 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 19 | supcnvlimsupmpt.r | . . 3 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) | |
| 20 | 15, 6, 18, 19 | supcnvlimsup 45745 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| 21 | 14, 20 | eqbrtrd 5132 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 ‘cfv 6514 supcsup 9398 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ℤcz 12536 ℤ≥cuz 12800 lim supclsp 15443 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fl 13761 df-ceil 13762 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 |
| This theorem is referenced by: smflimsuplem5 46829 |
| Copyright terms: Public domain | W3C validator |