![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version |
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
supcnvlimsupmpt.j | ⊢ Ⅎ𝑗𝜑 |
supcnvlimsupmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
supcnvlimsupmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
supcnvlimsupmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
supcnvlimsupmpt.r | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
supcnvlimsupmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) = (ℤ≥‘𝑛)) | |
2 | 1 | mpteq1d 5261 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
3 | 2 | rneqd 5963 | . . . . 5 ⊢ (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
4 | 3 | supeq1d 9515 | . . . 4 ⊢ (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
5 | 4 | cbvmptv 5279 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
6 | supcnvlimsupmpt.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 6 | uzssd3 45341 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
9 | 8 | resmptd 6069 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
10 | 9 | eqcomd 2746 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
11 | 10 | rneqd 5963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
12 | 11 | supeq1d 9515 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) |
13 | 12 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
14 | 5, 13 | eqtrid 2792 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
15 | supcnvlimsupmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
16 | supcnvlimsupmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
17 | supcnvlimsupmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
18 | 16, 17 | fmptd2f 45142 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
19 | supcnvlimsupmpt.r | . . 3 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) | |
20 | 15, 6, 18, 19 | supcnvlimsup 45661 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
21 | 14, 20 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 ‘cfv 6573 supcsup 9509 ℝcr 11183 ℝ*cxr 11323 < clt 11324 ℤcz 12639 ℤ≥cuz 12903 lim supclsp 15516 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fl 13843 df-ceil 13844 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 |
This theorem is referenced by: smflimsuplem5 46745 |
Copyright terms: Public domain | W3C validator |