Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsupmpt Structured version   Visualization version   GIF version

Theorem supcnvlimsupmpt 42015
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsupmpt.j 𝑗𝜑
supcnvlimsupmpt.m (𝜑𝑀 ∈ ℤ)
supcnvlimsupmpt.z 𝑍 = (ℤ𝑀)
supcnvlimsupmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
supcnvlimsupmpt.r (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsupmpt (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem supcnvlimsupmpt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . . . 7 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
21mpteq1d 5147 . . . . . 6 (𝑘 = 𝑛 → (𝑗 ∈ (ℤ𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
32rneqd 5802 . . . . 5 (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
43supeq1d 8904 . . . 4 (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ))
54cbvmptv 5161 . . 3 (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ))
6 supcnvlimsupmpt.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
76uzssd3 41693 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
87adantl 484 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
98resmptd 5902 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝑗𝑍𝐵) ↾ (ℤ𝑛)) = (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
109eqcomd 2827 . . . . . 6 ((𝜑𝑛𝑍) → (𝑗 ∈ (ℤ𝑛) ↦ 𝐵) = ((𝑗𝑍𝐵) ↾ (ℤ𝑛)))
1110rneqd 5802 . . . . 5 ((𝜑𝑛𝑍) → ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵) = ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)))
1211supeq1d 8904 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < ))
1312mpteq2dva 5153 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )))
145, 13syl5eq 2868 . 2 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )))
15 supcnvlimsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
16 supcnvlimsupmpt.j . . . 4 𝑗𝜑
17 supcnvlimsupmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
1816, 17fmptd2f 41498 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
19 supcnvlimsupmpt.r . . 3 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ∈ ℝ)
2015, 6, 18, 19supcnvlimsup 42014 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
2114, 20eqbrtrd 5080 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wss 3935   class class class wbr 5058  cmpt 5138  ran crn 5550  cres 5551  cfv 6349  supcsup 8898  cr 10530  *cxr 10668   < clt 10669  cz 11975  cuz 12237  lim supclsp 14821  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fl 13156  df-ceil 13157  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839
This theorem is referenced by:  smflimsuplem5  43092
  Copyright terms: Public domain W3C validator