Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsupmpt Structured version   Visualization version   GIF version

Theorem supcnvlimsupmpt 43236
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsupmpt.j 𝑗𝜑
supcnvlimsupmpt.m (𝜑𝑀 ∈ ℤ)
supcnvlimsupmpt.z 𝑍 = (ℤ𝑀)
supcnvlimsupmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
supcnvlimsupmpt.r (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsupmpt (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem supcnvlimsupmpt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6768 . . . . . . 7 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
21mpteq1d 5173 . . . . . 6 (𝑘 = 𝑛 → (𝑗 ∈ (ℤ𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
32rneqd 5844 . . . . 5 (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
43supeq1d 9166 . . . 4 (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ))
54cbvmptv 5191 . . 3 (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ))
6 supcnvlimsupmpt.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
76uzssd3 42920 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
87adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
98resmptd 5945 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝑗𝑍𝐵) ↾ (ℤ𝑛)) = (𝑗 ∈ (ℤ𝑛) ↦ 𝐵))
109eqcomd 2745 . . . . . 6 ((𝜑𝑛𝑍) → (𝑗 ∈ (ℤ𝑛) ↦ 𝐵) = ((𝑗𝑍𝐵) ↾ (ℤ𝑛)))
1110rneqd 5844 . . . . 5 ((𝜑𝑛𝑍) → ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵) = ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)))
1211supeq1d 9166 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < ))
1312mpteq2dva 5178 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )))
145, 13eqtrid 2791 . 2 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )))
15 supcnvlimsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
16 supcnvlimsupmpt.j . . . 4 𝑗𝜑
17 supcnvlimsupmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
1816, 17fmptd2f 42731 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
19 supcnvlimsupmpt.r . . 3 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ∈ ℝ)
2015, 6, 18, 19supcnvlimsup 43235 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
2114, 20eqbrtrd 5100 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1789  wcel 2109  wss 3891   class class class wbr 5078  cmpt 5161  ran crn 5589  cres 5590  cfv 6430  supcsup 9160  cr 10854  *cxr 10992   < clt 10993  cz 12302  cuz 12564  lim supclsp 15160  cli 15174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-ico 13067  df-fz 13222  df-fl 13493  df-ceil 13494  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178
This theorem is referenced by:  smflimsuplem5  44308
  Copyright terms: Public domain W3C validator