![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version |
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
supcnvlimsupmpt.j | β’ β²ππ |
supcnvlimsupmpt.m | β’ (π β π β β€) |
supcnvlimsupmpt.z | β’ π = (β€β₯βπ) |
supcnvlimsupmpt.b | β’ ((π β§ π β π) β π΅ β β) |
supcnvlimsupmpt.r | β’ (π β (lim supβ(π β π β¦ π΅)) β β) |
Ref | Expression |
---|---|
supcnvlimsupmpt | β’ (π β (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) β (lim supβ(π β π β¦ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . . . . . 7 β’ (π = π β (β€β₯βπ) = (β€β₯βπ)) | |
2 | 1 | mpteq1d 5233 | . . . . . 6 β’ (π = π β (π β (β€β₯βπ) β¦ π΅) = (π β (β€β₯βπ) β¦ π΅)) |
3 | 2 | rneqd 5927 | . . . . 5 β’ (π = π β ran (π β (β€β₯βπ) β¦ π΅) = ran (π β (β€β₯βπ) β¦ π΅)) |
4 | 3 | supeq1d 9437 | . . . 4 β’ (π = π β sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < ) = sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) |
5 | 4 | cbvmptv 5251 | . . 3 β’ (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) = (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) |
6 | supcnvlimsupmpt.z | . . . . . . . . . 10 β’ π = (β€β₯βπ) | |
7 | 6 | uzssd3 44621 | . . . . . . . . 9 β’ (π β π β (β€β₯βπ) β π) |
8 | 7 | adantl 481 | . . . . . . . 8 β’ ((π β§ π β π) β (β€β₯βπ) β π) |
9 | 8 | resmptd 6030 | . . . . . . 7 β’ ((π β§ π β π) β ((π β π β¦ π΅) βΎ (β€β₯βπ)) = (π β (β€β₯βπ) β¦ π΅)) |
10 | 9 | eqcomd 2730 | . . . . . 6 β’ ((π β§ π β π) β (π β (β€β₯βπ) β¦ π΅) = ((π β π β¦ π΅) βΎ (β€β₯βπ))) |
11 | 10 | rneqd 5927 | . . . . 5 β’ ((π β§ π β π) β ran (π β (β€β₯βπ) β¦ π΅) = ran ((π β π β¦ π΅) βΎ (β€β₯βπ))) |
12 | 11 | supeq1d 9437 | . . . 4 β’ ((π β§ π β π) β sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < ) = sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )) |
13 | 12 | mpteq2dva 5238 | . . 3 β’ (π β (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) = (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < ))) |
14 | 5, 13 | eqtrid 2776 | . 2 β’ (π β (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) = (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < ))) |
15 | supcnvlimsupmpt.m | . . 3 β’ (π β π β β€) | |
16 | supcnvlimsupmpt.j | . . . 4 β’ β²ππ | |
17 | supcnvlimsupmpt.b | . . . 4 β’ ((π β§ π β π) β π΅ β β) | |
18 | 16, 17 | fmptd2f 44422 | . . 3 β’ (π β (π β π β¦ π΅):πβΆβ) |
19 | supcnvlimsupmpt.r | . . 3 β’ (π β (lim supβ(π β π β¦ π΅)) β β) | |
20 | 15, 6, 18, 19 | supcnvlimsup 44941 | . 2 β’ (π β (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )) β (lim supβ(π β π β¦ π΅))) |
21 | 14, 20 | eqbrtrd 5160 | 1 β’ (π β (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) β (lim supβ(π β π β¦ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β²wnf 1777 β wcel 2098 β wss 3940 class class class wbr 5138 β¦ cmpt 5221 ran crn 5667 βΎ cres 5668 βcfv 6533 supcsup 9431 βcr 11105 β*cxr 11244 < clt 11245 β€cz 12555 β€β₯cuz 12819 lim supclsp 15411 β cli 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ico 13327 df-fz 13482 df-fl 13754 df-ceil 13755 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-limsup 15412 df-clim 15429 |
This theorem is referenced by: smflimsuplem5 46025 |
Copyright terms: Public domain | W3C validator |