Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version |
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
supcnvlimsupmpt.j | ⊢ Ⅎ𝑗𝜑 |
supcnvlimsupmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
supcnvlimsupmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
supcnvlimsupmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
supcnvlimsupmpt.r | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
supcnvlimsupmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) = (ℤ≥‘𝑛)) | |
2 | 1 | mpteq1d 5173 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
3 | 2 | rneqd 5844 | . . . . 5 ⊢ (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
4 | 3 | supeq1d 9166 | . . . 4 ⊢ (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
5 | 4 | cbvmptv 5191 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
6 | supcnvlimsupmpt.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 6 | uzssd3 42920 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
9 | 8 | resmptd 5945 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
10 | 9 | eqcomd 2745 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
11 | 10 | rneqd 5844 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
12 | 11 | supeq1d 9166 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) |
13 | 12 | mpteq2dva 5178 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
14 | 5, 13 | eqtrid 2791 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
15 | supcnvlimsupmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
16 | supcnvlimsupmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
17 | supcnvlimsupmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
18 | 16, 17 | fmptd2f 42731 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
19 | supcnvlimsupmpt.r | . . 3 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) | |
20 | 15, 6, 18, 19 | supcnvlimsup 43235 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
21 | 14, 20 | eqbrtrd 5100 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 ↾ cres 5590 ‘cfv 6430 supcsup 9160 ℝcr 10854 ℝ*cxr 10992 < clt 10993 ℤcz 12302 ℤ≥cuz 12564 lim supclsp 15160 ⇝ cli 15174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-fz 13222 df-fl 13493 df-ceil 13494 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 |
This theorem is referenced by: smflimsuplem5 44308 |
Copyright terms: Public domain | W3C validator |