![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supcnvlimsupmpt | Structured version Visualization version GIF version |
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
supcnvlimsupmpt.j | ⊢ Ⅎ𝑗𝜑 |
supcnvlimsupmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
supcnvlimsupmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
supcnvlimsupmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
supcnvlimsupmpt.r | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
supcnvlimsupmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) = (ℤ≥‘𝑛)) | |
2 | 1 | mpteq1d 5243 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
3 | 2 | rneqd 5952 | . . . . 5 ⊢ (𝑘 = 𝑛 → ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
4 | 3 | supeq1d 9484 | . . . 4 ⊢ (𝑘 = 𝑛 → sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
5 | 4 | cbvmptv 5261 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) |
6 | supcnvlimsupmpt.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 6 | uzssd3 45376 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
9 | 8 | resmptd 6060 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
10 | 9 | eqcomd 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
11 | 10 | rneqd 5952 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵) = ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛))) |
12 | 11 | supeq1d 9484 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < ) = sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) |
13 | 12 | mpteq2dva 5248 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
14 | 5, 13 | eqtrid 2787 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < ))) |
15 | supcnvlimsupmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
16 | supcnvlimsupmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
17 | supcnvlimsupmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
18 | 16, 17 | fmptd2f 45178 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
19 | supcnvlimsupmpt.r | . . 3 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) | |
20 | 15, 6, 18, 19 | supcnvlimsup 45696 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑛)), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
21 | 14, 20 | eqbrtrd 5170 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 ‘cfv 6563 supcsup 9478 ℝcr 11152 ℝ*cxr 11292 < clt 11293 ℤcz 12611 ℤ≥cuz 12876 lim supclsp 15503 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fl 13829 df-ceil 13830 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 |
This theorem is referenced by: smflimsuplem5 46780 |
Copyright terms: Public domain | W3C validator |