| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluzmpt | Structured version Visualization version GIF version | ||
| Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupvaluzmpt.j | ⊢ Ⅎ𝑗𝜑 |
| limsupvaluzmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupvaluzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| limsupvaluzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| limsupvaluzmpt | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupvaluzmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | limsupvaluzmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | limsupvaluzmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
| 4 | limsupvaluzmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 5 | 3, 4 | fmptd2f 45186 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) |
| 6 | 1, 2, 5 | limsupvaluz 45667 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < )) |
| 7 | 2 | uzssd3 45381 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → (ℤ≥‘𝑘) ⊆ 𝑍) |
| 8 | 7 | resmptd 6024 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
| 9 | 8 | rneqd 5915 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
| 10 | 9 | supeq1d 9452 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
| 11 | 10 | mpteq2ia 5213 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
| 13 | 12 | rneqd 5915 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
| 14 | 13 | infeq1d 9483 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| 15 | 6, 14 | eqtrd 2769 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ↦ cmpt 5198 ran crn 5652 ↾ cres 5653 ‘cfv 6527 supcsup 9446 infcinf 9447 ℝ*cxr 11260 < clt 11261 ℤcz 12580 ℤ≥cuz 12844 lim supclsp 15473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-ico 13359 df-fl 13798 df-limsup 15474 |
| This theorem is referenced by: smflimsuplem4 46782 |
| Copyright terms: Public domain | W3C validator |