Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluzmpt Structured version   Visualization version   GIF version

Theorem limsupvaluzmpt 45676
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluzmpt.j 𝑗𝜑
limsupvaluzmpt.m (𝜑𝑀 ∈ ℤ)
limsupvaluzmpt.z 𝑍 = (ℤ𝑀)
limsupvaluzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupvaluzmpt (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝐵,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem limsupvaluzmpt
StepHypRef Expression
1 limsupvaluzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluzmpt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluzmpt.j . . . 4 𝑗𝜑
4 limsupvaluzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45186 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ*)
61, 2, 5limsupvaluz 45667 . 2 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
72uzssd3 45381 . . . . . . . . 9 (𝑘𝑍 → (ℤ𝑘) ⊆ 𝑍)
87resmptd 6024 . . . . . . . 8 (𝑘𝑍 → ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
98rneqd 5915 . . . . . . 7 (𝑘𝑍 → ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
109supeq1d 9452 . . . . . 6 (𝑘𝑍 → sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1110mpteq2ia 5213 . . . . 5 (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1211a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1312rneqd 5915 . . 3 (𝜑 → ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1413infeq1d 9483 . 2 (𝜑 → inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
156, 14eqtrd 2769 1 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  cmpt 5198  ran crn 5652  cres 5653  cfv 6527  supcsup 9446  infcinf 9447  *cxr 11260   < clt 11261  cz 12580  cuz 12844  lim supclsp 15473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-n0 12494  df-z 12581  df-uz 12845  df-ico 13359  df-fl 13798  df-limsup 15474
This theorem is referenced by:  smflimsuplem4  46782
  Copyright terms: Public domain W3C validator