![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluzmpt | Structured version Visualization version GIF version |
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -β and the r.h.s. would be +β). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupvaluzmpt.j | β’ β²ππ |
limsupvaluzmpt.m | β’ (π β π β β€) |
limsupvaluzmpt.z | β’ π = (β€β₯βπ) |
limsupvaluzmpt.b | β’ ((π β§ π β π) β π΅ β β*) |
Ref | Expression |
---|---|
limsupvaluzmpt | β’ (π β (lim supβ(π β π β¦ π΅)) = inf(ran (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )), β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluzmpt.m | . . 3 β’ (π β π β β€) | |
2 | limsupvaluzmpt.z | . . 3 β’ π = (β€β₯βπ) | |
3 | limsupvaluzmpt.j | . . . 4 β’ β²ππ | |
4 | limsupvaluzmpt.b | . . . 4 β’ ((π β§ π β π) β π΅ β β*) | |
5 | 3, 4 | fmptd2f 44236 | . . 3 β’ (π β (π β π β¦ π΅):πβΆβ*) |
6 | 1, 2, 5 | limsupvaluz 44723 | . 2 β’ (π β (lim supβ(π β π β¦ π΅)) = inf(ran (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )), β*, < )) |
7 | 2 | uzssd3 44435 | . . . . . . . . 9 β’ (π β π β (β€β₯βπ) β π) |
8 | 7 | resmptd 6040 | . . . . . . . 8 β’ (π β π β ((π β π β¦ π΅) βΎ (β€β₯βπ)) = (π β (β€β₯βπ) β¦ π΅)) |
9 | 8 | rneqd 5937 | . . . . . . 7 β’ (π β π β ran ((π β π β¦ π΅) βΎ (β€β₯βπ)) = ran (π β (β€β₯βπ) β¦ π΅)) |
10 | 9 | supeq1d 9445 | . . . . . 6 β’ (π β π β sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < ) = sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) |
11 | 10 | mpteq2ia 5251 | . . . . 5 β’ (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )) = (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )) |
12 | 11 | a1i 11 | . . . 4 β’ (π β (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )) = (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < ))) |
13 | 12 | rneqd 5937 | . . 3 β’ (π β ran (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )) = ran (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < ))) |
14 | 13 | infeq1d 9476 | . 2 β’ (π β inf(ran (π β π β¦ sup(ran ((π β π β¦ π΅) βΎ (β€β₯βπ)), β*, < )), β*, < ) = inf(ran (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )), β*, < )) |
15 | 6, 14 | eqtrd 2771 | 1 β’ (π β (lim supβ(π β π β¦ π΅)) = inf(ran (π β π β¦ sup(ran (π β (β€β₯βπ) β¦ π΅), β*, < )), β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β²wnf 1784 β wcel 2105 β¦ cmpt 5231 ran crn 5677 βΎ cres 5678 βcfv 6543 supcsup 9439 infcinf 9440 β*cxr 11252 < clt 11253 β€cz 12563 β€β₯cuz 12827 lim supclsp 15419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-ico 13335 df-fl 13762 df-limsup 15420 |
This theorem is referenced by: smflimsuplem4 45838 |
Copyright terms: Public domain | W3C validator |