| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluzmpt | Structured version Visualization version GIF version | ||
| Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupvaluzmpt.j | ⊢ Ⅎ𝑗𝜑 |
| limsupvaluzmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupvaluzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| limsupvaluzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| limsupvaluzmpt | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupvaluzmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | limsupvaluzmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | limsupvaluzmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
| 4 | limsupvaluzmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 5 | 3, 4 | fmptd2f 45272 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) |
| 6 | 1, 2, 5 | limsupvaluz 45746 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < )) |
| 7 | 2 | uzssd3 45464 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → (ℤ≥‘𝑘) ⊆ 𝑍) |
| 8 | 7 | resmptd 5984 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
| 9 | 8 | rneqd 5873 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
| 10 | 9 | supeq1d 9325 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
| 11 | 10 | mpteq2ia 5181 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
| 13 | 12 | rneqd 5873 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
| 14 | 13 | infeq1d 9357 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| 15 | 6, 14 | eqtrd 2766 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ↦ cmpt 5167 ran crn 5612 ↾ cres 5613 ‘cfv 6476 supcsup 9319 infcinf 9320 ℝ*cxr 11140 < clt 11141 ℤcz 12463 ℤ≥cuz 12727 lim supclsp 15372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-ico 13246 df-fl 13691 df-limsup 15373 |
| This theorem is referenced by: smflimsuplem4 46861 |
| Copyright terms: Public domain | W3C validator |