Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluzmpt Structured version   Visualization version   GIF version

Theorem limsupvaluzmpt 45672
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluzmpt.j 𝑗𝜑
limsupvaluzmpt.m (𝜑𝑀 ∈ ℤ)
limsupvaluzmpt.z 𝑍 = (ℤ𝑀)
limsupvaluzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupvaluzmpt (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝐵,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem limsupvaluzmpt
StepHypRef Expression
1 limsupvaluzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluzmpt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluzmpt.j . . . 4 𝑗𝜑
4 limsupvaluzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45177 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ*)
61, 2, 5limsupvaluz 45663 . 2 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
72uzssd3 45375 . . . . . . . . 9 (𝑘𝑍 → (ℤ𝑘) ⊆ 𝑍)
87resmptd 6059 . . . . . . . 8 (𝑘𝑍 → ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
98rneqd 5951 . . . . . . 7 (𝑘𝑍 → ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
109supeq1d 9483 . . . . . 6 (𝑘𝑍 → sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1110mpteq2ia 5250 . . . . 5 (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1211a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1312rneqd 5951 . . 3 (𝜑 → ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1413infeq1d 9514 . 2 (𝜑 → inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
156, 14eqtrd 2774 1 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wnf 1779  wcel 2105  cmpt 5230  ran crn 5689  cres 5690  cfv 6562  supcsup 9477  infcinf 9478  *cxr 11291   < clt 11292  cz 12610  cuz 12875  lim supclsp 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-ico 13389  df-fl 13828  df-limsup 15503
This theorem is referenced by:  smflimsuplem4  46778
  Copyright terms: Public domain W3C validator