| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dflinc2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
| Ref | Expression |
|---|---|
| dflinc2 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-linc 48399 | . 2 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) | |
| 2 | elmapfn 8841 | . . . . . . . 8 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣) |
| 4 | fnresi 6650 | . . . . . . . 8 ⊢ ( I ↾ 𝑣) Fn 𝑣 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣) |
| 6 | vex 3454 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V) |
| 8 | inidm 4193 | . . . . . . 7 ⊢ (𝑣 ∩ 𝑣) = 𝑣 | |
| 9 | eqidd 2731 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (𝑠‘𝑖) = (𝑠‘𝑖)) | |
| 10 | fvresi 7150 | . . . . . . . 8 ⊢ (𝑖 ∈ 𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖) |
| 12 | 3, 5, 7, 7, 8, 9, 11 | offval 7665 | . . . . . 6 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) |
| 13 | 12 | eqcomd 2736 | . . . . 5 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)) = (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))) |
| 14 | 13 | oveq2d 7406 | . . . 4 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) = (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
| 15 | 14 | mpoeq3ia 7470 | . . 3 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
| 16 | 15 | mpteq2i 5206 | . 2 ⊢ (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| 17 | 1, 16 | eqtri 2753 | 1 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ∘f cof 7654 ↑m cmap 8802 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 Σg cgsu 17410 linC clinc 48397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-1st 7971 df-2nd 7972 df-map 8804 df-linc 48399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |