Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   GIF version

Theorem dflinc2 45639
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Distinct variable group:   𝑚,𝑠,𝑣

Proof of Theorem dflinc2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-linc 45635 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))))
2 elmapfn 8611 . . . . . . . 8 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣)
32adantr 480 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣)
4 fnresi 6545 . . . . . . . 8 ( I ↾ 𝑣) Fn 𝑣
54a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣)
6 vex 3426 . . . . . . . 8 𝑣 ∈ V
76a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V)
8 inidm 4149 . . . . . . 7 (𝑣𝑣) = 𝑣
9 eqidd 2739 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (𝑠𝑖) = (𝑠𝑖))
10 fvresi 7027 . . . . . . . 8 (𝑖𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖)
1110adantl 481 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖)
123, 5, 7, 7, 8, 9, 11offval 7520 . . . . . 6 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)) = (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))
1312eqcomd 2744 . . . . 5 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)) = (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))
1413oveq2d 7271 . . . 4 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))) = (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1514mpoeq3ia 7331 . . 3 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1615mpteq2i 5175 . 2 (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
171, 16eqtri 2766 1 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530  cmpt 5153   I cid 5479  cres 5582   Fn wfn 6413  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  m cmap 8573  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892   Σg cgsu 17068   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-1st 7804  df-2nd 7805  df-map 8575  df-linc 45635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator