Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   GIF version

Theorem dflinc2 44459
 Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Distinct variable group:   𝑚,𝑠,𝑣

Proof of Theorem dflinc2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-linc 44455 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))))
2 elmapfn 8423 . . . . . . . 8 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣)
32adantr 483 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣)
4 fnresi 6470 . . . . . . . 8 ( I ↾ 𝑣) Fn 𝑣
54a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣)
6 vex 3497 . . . . . . . 8 𝑣 ∈ V
76a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V)
8 inidm 4194 . . . . . . 7 (𝑣𝑣) = 𝑣
9 eqidd 2822 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (𝑠𝑖) = (𝑠𝑖))
10 fvresi 6929 . . . . . . . 8 (𝑖𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖)
1110adantl 484 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖)
123, 5, 7, 7, 8, 9, 11offval 7410 . . . . . 6 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)) = (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))
1312eqcomd 2827 . . . . 5 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)) = (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))
1413oveq2d 7166 . . . 4 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))) = (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1514mpoeq3ia 7226 . . 3 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1615mpteq2i 5150 . 2 (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
171, 16eqtri 2844 1 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 398   = wceq 1533   ∈ wcel 2110  Vcvv 3494  𝒫 cpw 4538   ↦ cmpt 5138   I cid 5453   ↾ cres 5551   Fn wfn 6344  ‘cfv 6349  (class class class)co 7150   ∈ cmpo 7152   ∘f cof 7401   ↑m cmap 8400  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563   Σg cgsu 16708   linC clinc 44453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-1st 7683  df-2nd 7684  df-map 8402  df-linc 44455 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator