Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   GIF version

Theorem dflinc2 48139
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Distinct variable group:   𝑚,𝑠,𝑣

Proof of Theorem dflinc2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-linc 48135 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))))
2 elmapfn 8923 . . . . . . . 8 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣)
32adantr 480 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣)
4 fnresi 6709 . . . . . . . 8 ( I ↾ 𝑣) Fn 𝑣
54a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣)
6 vex 3492 . . . . . . . 8 𝑣 ∈ V
76a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V)
8 inidm 4248 . . . . . . 7 (𝑣𝑣) = 𝑣
9 eqidd 2741 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (𝑠𝑖) = (𝑠𝑖))
10 fvresi 7207 . . . . . . . 8 (𝑖𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖)
1110adantl 481 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖)
123, 5, 7, 7, 8, 9, 11offval 7723 . . . . . 6 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)) = (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))
1312eqcomd 2746 . . . . 5 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)) = (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))
1413oveq2d 7464 . . . 4 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))) = (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1514mpoeq3ia 7528 . . 3 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1615mpteq2i 5271 . 2 (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
171, 16eqtri 2768 1 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  𝒫 cpw 4622  cmpt 5249   I cid 5592  cres 5702   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  m cmap 8884  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315   Σg cgsu 17500   linC clinc 48133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-1st 8030  df-2nd 8031  df-map 8886  df-linc 48135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator