Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   GIF version

Theorem dflinc2 48450
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Distinct variable group:   𝑚,𝑠,𝑣

Proof of Theorem dflinc2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-linc 48446 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))))
2 elmapfn 8789 . . . . . . . 8 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣)
32adantr 480 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣)
4 fnresi 6610 . . . . . . . 8 ( I ↾ 𝑣) Fn 𝑣
54a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣)
6 vex 3440 . . . . . . . 8 𝑣 ∈ V
76a1i 11 . . . . . . 7 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V)
8 inidm 4174 . . . . . . 7 (𝑣𝑣) = 𝑣
9 eqidd 2732 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (𝑠𝑖) = (𝑠𝑖))
10 fvresi 7107 . . . . . . . 8 (𝑖𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖)
1110adantl 481 . . . . . . 7 (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖)
123, 5, 7, 7, 8, 9, 11offval 7619 . . . . . 6 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)) = (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))
1312eqcomd 2737 . . . . 5 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)) = (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))
1413oveq2d 7362 . . . 4 ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))) = (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1514mpoeq3ia 7424 . . 3 (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣))))
1615mpteq2i 5185 . 2 (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖𝑣 ↦ ((𝑠𝑖)( ·𝑠𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
171, 16eqtri 2754 1 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠f ( ·𝑠𝑚)( I ↾ 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  𝒫 cpw 4547  cmpt 5170   I cid 5508  cres 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  m cmap 8750  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165   Σg cgsu 17344   linC clinc 48444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-1st 7921  df-2nd 7922  df-map 8752  df-linc 48446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator