![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dflinc2 | Structured version Visualization version GIF version |
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
Ref | Expression |
---|---|
dflinc2 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-linc 46477 | . 2 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) | |
2 | elmapfn 8803 | . . . . . . . 8 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣) | |
3 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣) |
4 | fnresi 6630 | . . . . . . . 8 ⊢ ( I ↾ 𝑣) Fn 𝑣 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣) |
6 | vex 3449 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V) |
8 | inidm 4178 | . . . . . . 7 ⊢ (𝑣 ∩ 𝑣) = 𝑣 | |
9 | eqidd 2737 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (𝑠‘𝑖) = (𝑠‘𝑖)) | |
10 | fvresi 7119 | . . . . . . . 8 ⊢ (𝑖 ∈ 𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖) | |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖) |
12 | 3, 5, 7, 7, 8, 9, 11 | offval 7626 | . . . . . 6 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) |
13 | 12 | eqcomd 2742 | . . . . 5 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)) = (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))) |
14 | 13 | oveq2d 7373 | . . . 4 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) = (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
15 | 14 | mpoeq3ia 7435 | . . 3 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
16 | 15 | mpteq2i 5210 | . 2 ⊢ (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
17 | 1, 16 | eqtri 2764 | 1 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 𝒫 cpw 4560 ↦ cmpt 5188 I cid 5530 ↾ cres 5635 Fn wfn 6491 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ∘f cof 7615 ↑m cmap 8765 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 Σg cgsu 17322 linC clinc 46475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-1st 7921 df-2nd 7922 df-map 8767 df-linc 46477 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |