Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   GIF version

Theorem dflinc2 47081
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2 linC = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣)))))
Distinct variable group:   π‘š,𝑠,𝑣

Proof of Theorem dflinc2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-linc 47077 . 2 linC = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖)))))
2 elmapfn 8858 . . . . . . . 8 (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) β†’ 𝑠 Fn 𝑣)
32adantr 481 . . . . . . 7 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ 𝑠 Fn 𝑣)
4 fnresi 6679 . . . . . . . 8 ( I β†Ύ 𝑣) Fn 𝑣
54a1i 11 . . . . . . 7 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ ( I β†Ύ 𝑣) Fn 𝑣)
6 vex 3478 . . . . . . . 8 𝑣 ∈ V
76a1i 11 . . . . . . 7 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ 𝑣 ∈ V)
8 inidm 4218 . . . . . . 7 (𝑣 ∩ 𝑣) = 𝑣
9 eqidd 2733 . . . . . . 7 (((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) ∧ 𝑖 ∈ 𝑣) β†’ (π‘ β€˜π‘–) = (π‘ β€˜π‘–))
10 fvresi 7170 . . . . . . . 8 (𝑖 ∈ 𝑣 β†’ (( I β†Ύ 𝑣)β€˜π‘–) = 𝑖)
1110adantl 482 . . . . . . 7 (((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) ∧ 𝑖 ∈ 𝑣) β†’ (( I β†Ύ 𝑣)β€˜π‘–) = 𝑖)
123, 5, 7, 7, 8, 9, 11offval 7678 . . . . . 6 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖)))
1312eqcomd 2738 . . . . 5 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖)) = (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣)))
1413oveq2d 7424 . . . 4 ((𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ (π‘š Ξ£g (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖))) = (π‘š Ξ£g (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣))))
1514mpoeq3ia 7486 . . 3 (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖)))) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣))))
1615mpteq2i 5253 . 2 (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑖 ∈ 𝑣 ↦ ((π‘ β€˜π‘–)( ·𝑠 β€˜π‘š)𝑖))))) = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣)))))
171, 16eqtri 2760 1 linC = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (𝑠 ∘f ( ·𝑠 β€˜π‘š)( I β†Ύ 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  π’« cpw 4602   ↦ cmpt 5231   I cid 5573   β†Ύ cres 5678   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410   ∘f cof 7667   ↑m cmap 8819  Basecbs 17143  Scalarcsca 17199   ·𝑠 cvsca 17200   Ξ£g cgsu 17385   linC clinc 47075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-1st 7974  df-2nd 7975  df-map 8821  df-linc 47077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator