| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dflinc2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
| Ref | Expression |
|---|---|
| dflinc2 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-linc 48446 | . 2 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) | |
| 2 | elmapfn 8789 | . . . . . . . 8 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) → 𝑠 Fn 𝑣) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣) |
| 4 | fnresi 6610 | . . . . . . . 8 ⊢ ( I ↾ 𝑣) Fn 𝑣 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣) |
| 6 | vex 3440 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V) |
| 8 | inidm 4174 | . . . . . . 7 ⊢ (𝑣 ∩ 𝑣) = 𝑣 | |
| 9 | eqidd 2732 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (𝑠‘𝑖) = (𝑠‘𝑖)) | |
| 10 | fvresi 7107 | . . . . . . . 8 ⊢ (𝑖 ∈ 𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖) |
| 12 | 3, 5, 7, 7, 8, 9, 11 | offval 7619 | . . . . . 6 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) |
| 13 | 12 | eqcomd 2737 | . . . . 5 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)) = (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))) |
| 14 | 13 | oveq2d 7362 | . . . 4 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) = (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
| 15 | 14 | mpoeq3ia 7424 | . . 3 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
| 16 | 15 | mpteq2i 5185 | . 2 ⊢ (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| 17 | 1, 16 | eqtri 2754 | 1 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 ↦ cmpt 5170 I cid 5508 ↾ cres 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ∘f cof 7608 ↑m cmap 8750 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 Σg cgsu 17344 linC clinc 48444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-1st 7921 df-2nd 7922 df-map 8752 df-linc 48446 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |