| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version | ||
| Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| fnwe.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
| fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
| fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
| fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
| Ref | Expression |
|---|---|
| fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe.1 | . 2 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
| 2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
| 4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
| 5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
| 6 | eqid 2730 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
| 7 | eqid 2730 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) = (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8113 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 We wwe 5593 × cxp 5639 “ cima 5644 ⟶wf 6510 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: r0weon 9972 |
| Copyright terms: Public domain | W3C validator |