MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwe Structured version   Visualization version   GIF version

Theorem fnwe 8068
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnwe.2 (𝜑𝐹:𝐴𝐵)
fnwe.3 (𝜑𝑅 We 𝐵)
fnwe.4 (𝜑𝑆 We 𝐴)
fnwe.5 (𝜑 → (𝐹𝑤) ∈ V)
Assertion
Ref Expression
fnwe (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝜑,𝑤,𝑥   𝑤,𝐹,𝑥,𝑦   𝑤,𝑅,𝑥,𝑦   𝑤,𝑆,𝑥,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem fnwe
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe.1 . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
2 fnwe.2 . 2 (𝜑𝐹:𝐴𝐵)
3 fnwe.3 . 2 (𝜑𝑅 We 𝐵)
4 fnwe.4 . 2 (𝜑𝑆 We 𝐴)
5 fnwe.5 . 2 (𝜑 → (𝐹𝑤) ∈ V)
6 eqid 2733 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
7 eqid 2733 . 2 (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩) = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
81, 2, 3, 4, 5, 6, 7fnwelem 8067 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581   class class class wbr 5093  {copab 5155  cmpt 5174   We wwe 5571   × cxp 5617  cima 5622  wf 6482  cfv 6486  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-1st 7927  df-2nd 7928
This theorem is referenced by:  r0weon  9910
  Copyright terms: Public domain W3C validator