![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version |
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
fnwe.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
Ref | Expression |
---|---|
fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | . 2 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
6 | eqid 2740 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
7 | eqid 2740 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) = (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8172 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 We wwe 5651 × cxp 5698 “ cima 5703 ⟶wf 6569 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: r0weon 10081 |
Copyright terms: Public domain | W3C validator |