MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwe Structured version   Visualization version   GIF version

Theorem fnwe 7574
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnwe.2 (𝜑𝐹:𝐴𝐵)
fnwe.3 (𝜑𝑅 We 𝐵)
fnwe.4 (𝜑𝑆 We 𝐴)
fnwe.5 (𝜑 → (𝐹𝑤) ∈ V)
Assertion
Ref Expression
fnwe (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝜑,𝑤,𝑥   𝑤,𝐹,𝑥,𝑦   𝑤,𝑅,𝑥,𝑦   𝑤,𝑆,𝑥,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem fnwe
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe.1 . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
2 fnwe.2 . 2 (𝜑𝐹:𝐴𝐵)
3 fnwe.3 . 2 (𝜑𝑅 We 𝐵)
4 fnwe.4 . 2 (𝜑𝑆 We 𝐴)
5 fnwe.5 . 2 (𝜑 → (𝐹𝑤) ∈ V)
6 eqid 2777 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
7 eqid 2777 . 2 (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩) = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
81, 2, 3, 4, 5, 6, 7fnwelem 7573 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2106  Vcvv 3397  cop 4403   class class class wbr 4886  {copab 4948  cmpt 4965   We wwe 5313   × cxp 5353  cima 5358  wf 6131  cfv 6135  1st c1st 7443  2nd c2nd 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-int 4711  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-1st 7445  df-2nd 7446
This theorem is referenced by:  r0weon  9168
  Copyright terms: Public domain W3C validator