![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version |
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
fnwe.1 | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
Ref | Expression |
---|---|
fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | . 2 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
6 | eqid 2732 | . 2 ⊢ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
7 | eqid 2732 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) = (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8113 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 We wwe 5629 × cxp 5673 “ cima 5678 ⟶wf 6536 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: r0weon 10003 |
Copyright terms: Public domain | W3C validator |