MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwe Structured version   Visualization version   GIF version

Theorem fnwe 8062
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnwe.2 (𝜑𝐹:𝐴𝐵)
fnwe.3 (𝜑𝑅 We 𝐵)
fnwe.4 (𝜑𝑆 We 𝐴)
fnwe.5 (𝜑 → (𝐹𝑤) ∈ V)
Assertion
Ref Expression
fnwe (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝜑,𝑤,𝑥   𝑤,𝐹,𝑥,𝑦   𝑤,𝑅,𝑥,𝑦   𝑤,𝑆,𝑥,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem fnwe
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe.1 . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
2 fnwe.2 . 2 (𝜑𝐹:𝐴𝐵)
3 fnwe.3 . 2 (𝜑𝑅 We 𝐵)
4 fnwe.4 . 2 (𝜑𝑆 We 𝐴)
5 fnwe.5 . 2 (𝜑 → (𝐹𝑤) ∈ V)
6 eqid 2731 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
7 eqid 2731 . 2 (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩) = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
81, 2, 3, 4, 5, 6, 7fnwelem 8061 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582   class class class wbr 5091  {copab 5153  cmpt 5172   We wwe 5568   × cxp 5614  cima 5619  wf 6477  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-1st 7921  df-2nd 7922
This theorem is referenced by:  r0weon  9900
  Copyright terms: Public domain W3C validator