![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version |
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
fnwe.1 | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
Ref | Expression |
---|---|
fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | . 2 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
6 | eqid 2737 | . 2 ⊢ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
7 | eqid 2737 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) = (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8068 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ⟨cop 4597 class class class wbr 5110 {copab 5172 ↦ cmpt 5193 We wwe 5592 × cxp 5636 “ cima 5641 ⟶wf 6497 ‘cfv 6501 1st c1st 7924 2nd c2nd 7925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-1st 7926 df-2nd 7927 |
This theorem is referenced by: r0weon 9955 |
Copyright terms: Public domain | W3C validator |