| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version | ||
| Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| fnwe.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
| fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
| fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
| fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
| Ref | Expression |
|---|---|
| fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe.1 | . 2 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
| 2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
| 4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
| 5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
| 6 | eqid 2733 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
| 7 | eqid 2733 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) = (𝑧 ∈ 𝐴 ↦ 〈(𝐹‘𝑧), 𝑧〉) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8067 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 class class class wbr 5093 {copab 5155 ↦ cmpt 5174 We wwe 5571 × cxp 5617 “ cima 5622 ⟶wf 6482 ‘cfv 6486 1st c1st 7925 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: r0weon 9910 |
| Copyright terms: Public domain | W3C validator |