![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnwe | Structured version Visualization version GIF version |
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
fnwe.1 | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
fnwe.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fnwe.3 | ⊢ (𝜑 → 𝑅 We 𝐵) |
fnwe.4 | ⊢ (𝜑 → 𝑆 We 𝐴) |
fnwe.5 | ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) |
Ref | Expression |
---|---|
fnwe | ⊢ (𝜑 → 𝑇 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | . 2 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} | |
2 | fnwe.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fnwe.3 | . 2 ⊢ (𝜑 → 𝑅 We 𝐵) | |
4 | fnwe.4 | . 2 ⊢ (𝜑 → 𝑆 We 𝐴) | |
5 | fnwe.5 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑤) ∈ V) | |
6 | eqid 2728 | . 2 ⊢ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st ‘𝑢)𝑅(1st ‘𝑣) ∨ ((1st ‘𝑢) = (1st ‘𝑣) ∧ (2nd ‘𝑢)𝑆(2nd ‘𝑣))))} | |
7 | eqid 2728 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) = (𝑧 ∈ 𝐴 ↦ ⟨(𝐹‘𝑧), 𝑧⟩) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 8130 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⟨cop 4630 class class class wbr 5142 {copab 5204 ↦ cmpt 5225 We wwe 5626 × cxp 5670 “ cima 5675 ⟶wf 6538 ‘cfv 6542 1st c1st 7985 2nd c2nd 7986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-1st 7987 df-2nd 7988 |
This theorem is referenced by: r0weon 10029 |
Copyright terms: Public domain | W3C validator |