Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneq Structured version   Visualization version   GIF version

Theorem fsneq 44718
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneq.a (𝜑𝐴𝑉)
fsneq.b 𝐵 = {𝐴}
fsneq.f (𝜑𝐹 Fn 𝐵)
fsneq.g (𝜑𝐺 Fn 𝐵)
Assertion
Ref Expression
fsneq (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))

Proof of Theorem fsneq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsneq.f . . 3 (𝜑𝐹 Fn 𝐵)
2 fsneq.g . . 3 (𝜑𝐺 Fn 𝐵)
3 eqfnfv 7039 . . 3 ((𝐹 Fn 𝐵𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
41, 2, 3syl2anc 582 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
5 fsneq.a . . . . . . . 8 (𝜑𝐴𝑉)
6 snidg 4664 . . . . . . . 8 (𝐴𝑉𝐴 ∈ {𝐴})
75, 6syl 17 . . . . . . 7 (𝜑𝐴 ∈ {𝐴})
8 fsneq.b . . . . . . . . 9 𝐵 = {𝐴}
98eqcomi 2734 . . . . . . . 8 {𝐴} = 𝐵
109a1i 11 . . . . . . 7 (𝜑 → {𝐴} = 𝐵)
117, 10eleqtrd 2827 . . . . . 6 (𝜑𝐴𝐵)
1211adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → 𝐴𝐵)
13 simpr 483 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
14 fveq2 6896 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
15 fveq2 6896 . . . . . . 7 (𝑥 = 𝐴 → (𝐺𝑥) = (𝐺𝐴))
1614, 15eqeq12d 2741 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
1716rspcva 3604 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1812, 13, 17syl2anc 582 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1918ex 411 . . 3 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) → (𝐹𝐴) = (𝐺𝐴)))
20 simpl 481 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝐴) = (𝐺𝐴))
218eleq2i 2817 . . . . . . . . . . 11 (𝑥𝐵𝑥 ∈ {𝐴})
2221biimpi 215 . . . . . . . . . 10 (𝑥𝐵𝑥 ∈ {𝐴})
23 velsn 4646 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23sylib 217 . . . . . . . . 9 (𝑥𝐵𝑥 = 𝐴)
2524fveq2d 6900 . . . . . . . 8 (𝑥𝐵 → (𝐹𝑥) = (𝐹𝐴))
2625adantl 480 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐹𝐴))
2724fveq2d 6900 . . . . . . . 8 (𝑥𝐵 → (𝐺𝑥) = (𝐺𝐴))
2827adantl 480 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐺𝑥) = (𝐺𝐴))
2920, 26, 283eqtr4d 2775 . . . . . 6 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3029adantll 712 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3130ralrimiva 3135 . . . 4 ((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
3231ex 411 . . 3 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
3319, 32impbid 211 . 2 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
344, 33bitrd 278 1 (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  {csn 4630   Fn wfn 6544  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557
This theorem is referenced by:  fsneqrn  44723  unirnmapsn  44726
  Copyright terms: Public domain W3C validator