Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneq Structured version   Visualization version   GIF version

Theorem fsneq 45149
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneq.a (𝜑𝐴𝑉)
fsneq.b 𝐵 = {𝐴}
fsneq.f (𝜑𝐹 Fn 𝐵)
fsneq.g (𝜑𝐺 Fn 𝐵)
Assertion
Ref Expression
fsneq (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))

Proof of Theorem fsneq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsneq.f . . 3 (𝜑𝐹 Fn 𝐵)
2 fsneq.g . . 3 (𝜑𝐺 Fn 𝐵)
3 eqfnfv 7051 . . 3 ((𝐹 Fn 𝐵𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
5 fsneq.a . . . . . . . 8 (𝜑𝐴𝑉)
6 snidg 4665 . . . . . . . 8 (𝐴𝑉𝐴 ∈ {𝐴})
75, 6syl 17 . . . . . . 7 (𝜑𝐴 ∈ {𝐴})
8 fsneq.b . . . . . . . . 9 𝐵 = {𝐴}
98eqcomi 2744 . . . . . . . 8 {𝐴} = 𝐵
109a1i 11 . . . . . . 7 (𝜑 → {𝐴} = 𝐵)
117, 10eleqtrd 2841 . . . . . 6 (𝜑𝐴𝐵)
1211adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → 𝐴𝐵)
13 simpr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
14 fveq2 6907 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
15 fveq2 6907 . . . . . . 7 (𝑥 = 𝐴 → (𝐺𝑥) = (𝐺𝐴))
1614, 15eqeq12d 2751 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
1716rspcva 3620 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1812, 13, 17syl2anc 584 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1918ex 412 . . 3 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) → (𝐹𝐴) = (𝐺𝐴)))
20 simpl 482 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝐴) = (𝐺𝐴))
218eleq2i 2831 . . . . . . . . . . 11 (𝑥𝐵𝑥 ∈ {𝐴})
2221biimpi 216 . . . . . . . . . 10 (𝑥𝐵𝑥 ∈ {𝐴})
23 velsn 4647 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23sylib 218 . . . . . . . . 9 (𝑥𝐵𝑥 = 𝐴)
2524fveq2d 6911 . . . . . . . 8 (𝑥𝐵 → (𝐹𝑥) = (𝐹𝐴))
2625adantl 481 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐹𝐴))
2724fveq2d 6911 . . . . . . . 8 (𝑥𝐵 → (𝐺𝑥) = (𝐺𝐴))
2827adantl 481 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐺𝑥) = (𝐺𝐴))
2920, 26, 283eqtr4d 2785 . . . . . 6 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3029adantll 714 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3130ralrimiva 3144 . . . 4 ((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
3231ex 412 . . 3 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
3319, 32impbid 212 . 2 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
344, 33bitrd 279 1 (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {csn 4631   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  fsneqrn  45154  unirnmapsn  45157
  Copyright terms: Public domain W3C validator