Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneq Structured version   Visualization version   GIF version

Theorem fsneq 42746
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneq.a (𝜑𝐴𝑉)
fsneq.b 𝐵 = {𝐴}
fsneq.f (𝜑𝐹 Fn 𝐵)
fsneq.g (𝜑𝐺 Fn 𝐵)
Assertion
Ref Expression
fsneq (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))

Proof of Theorem fsneq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsneq.f . . 3 (𝜑𝐹 Fn 𝐵)
2 fsneq.g . . 3 (𝜑𝐺 Fn 𝐵)
3 eqfnfv 6909 . . 3 ((𝐹 Fn 𝐵𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
5 fsneq.a . . . . . . . 8 (𝜑𝐴𝑉)
6 snidg 4595 . . . . . . . 8 (𝐴𝑉𝐴 ∈ {𝐴})
75, 6syl 17 . . . . . . 7 (𝜑𝐴 ∈ {𝐴})
8 fsneq.b . . . . . . . . 9 𝐵 = {𝐴}
98eqcomi 2747 . . . . . . . 8 {𝐴} = 𝐵
109a1i 11 . . . . . . 7 (𝜑 → {𝐴} = 𝐵)
117, 10eleqtrd 2841 . . . . . 6 (𝜑𝐴𝐵)
1211adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → 𝐴𝐵)
13 simpr 485 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
14 fveq2 6774 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
15 fveq2 6774 . . . . . . 7 (𝑥 = 𝐴 → (𝐺𝑥) = (𝐺𝐴))
1614, 15eqeq12d 2754 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
1716rspcva 3559 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1812, 13, 17syl2anc 584 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1918ex 413 . . 3 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) → (𝐹𝐴) = (𝐺𝐴)))
20 simpl 483 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝐴) = (𝐺𝐴))
218eleq2i 2830 . . . . . . . . . . 11 (𝑥𝐵𝑥 ∈ {𝐴})
2221biimpi 215 . . . . . . . . . 10 (𝑥𝐵𝑥 ∈ {𝐴})
23 velsn 4577 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23sylib 217 . . . . . . . . 9 (𝑥𝐵𝑥 = 𝐴)
2524fveq2d 6778 . . . . . . . 8 (𝑥𝐵 → (𝐹𝑥) = (𝐹𝐴))
2625adantl 482 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐹𝐴))
2724fveq2d 6778 . . . . . . . 8 (𝑥𝐵 → (𝐺𝑥) = (𝐺𝐴))
2827adantl 482 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐺𝑥) = (𝐺𝐴))
2920, 26, 283eqtr4d 2788 . . . . . 6 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3029adantll 711 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3130ralrimiva 3103 . . . 4 ((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
3231ex 413 . . 3 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
3319, 32impbid 211 . 2 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
344, 33bitrd 278 1 (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {csn 4561   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fsneqrn  42751  unirnmapsn  42754
  Copyright terms: Public domain W3C validator