Step | Hyp | Ref
| Expression |
1 | | fsneq.f |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐵) |
2 | | fsneq.g |
. . 3
⊢ (𝜑 → 𝐺 Fn 𝐵) |
3 | | eqfnfv 6909 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
4 | 1, 2, 3 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | | fsneq.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | snidg 4595 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
8 | | fsneq.b |
. . . . . . . . 9
⊢ 𝐵 = {𝐴} |
9 | 8 | eqcomi 2747 |
. . . . . . . 8
⊢ {𝐴} = 𝐵 |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝐴} = 𝐵) |
11 | 7, 10 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) → 𝐴 ∈ 𝐵) |
13 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
14 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
15 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐺‘𝑥) = (𝐺‘𝐴)) |
16 | 14, 15 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |
17 | 16 | rspcva 3559 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
18 | 12, 13, 17 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
19 | 18 | ex 413 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥) → (𝐹‘𝐴) = (𝐺‘𝐴))) |
20 | | simpl 483 |
. . . . . . 7
⊢ (((𝐹‘𝐴) = (𝐺‘𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
21 | 8 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {𝐴}) |
22 | 21 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {𝐴}) |
23 | | velsn 4577 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
24 | 22, 23 | sylib 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → 𝑥 = 𝐴) |
25 | 24 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
26 | 25 | adantl 482 |
. . . . . . 7
⊢ (((𝐹‘𝐴) = (𝐺‘𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
27 | 24 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 → (𝐺‘𝑥) = (𝐺‘𝐴)) |
28 | 27 | adantl 482 |
. . . . . . 7
⊢ (((𝐹‘𝐴) = (𝐺‘𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝐴)) |
29 | 20, 26, 28 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝐹‘𝐴) = (𝐺‘𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
30 | 29 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝐴) = (𝐺‘𝐴)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
31 | 30 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐴) = (𝐺‘𝐴)) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
32 | 31 | ex 413 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
33 | 19, 32 | impbid 211 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |
34 | 4, 33 | bitrd 278 |
1
⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |