| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppssindlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fsuppssind 42588. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.) |
| Ref | Expression |
|---|---|
| fsuppssindlem1.z | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppssindlem1.v | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| fsuppssindlem1.1 | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| fsuppssindlem1.2 | ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| fsuppssindlem1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppssindlem1.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 2 | 1 | feqmptd 6932 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 3 | fvres 6880 | . . . . 5 ⊢ (𝑥 ∈ 𝑆 → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝑆) → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) |
| 5 | eldif 3927 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ 𝑆) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) | |
| 6 | fsuppssindlem1.2 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) | |
| 7 | fsuppssindlem1.v | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | fsuppssindlem1.z | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 9 | 1, 6, 7, 8 | suppssr 8177 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → (𝐹‘𝑥) = 0 ) |
| 10 | 9 | eqcomd 2736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → 0 = (𝐹‘𝑥)) |
| 11 | 5, 10 | sylan2br 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) → 0 = (𝐹‘𝑥)) |
| 12 | 11 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝑆) → 0 = (𝐹‘𝑥)) |
| 13 | 4, 12 | ifeqda 4528 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ) = (𝐹‘𝑥)) |
| 14 | 13 | mpteq2dva 5203 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 )) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 15 | 2, 14 | eqtr4d 2768 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ifcif 4491 ↦ cmpt 5191 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: fsuppssind 42588 |
| Copyright terms: Public domain | W3C validator |