| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppssindlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fsuppssind 42563. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.) |
| Ref | Expression |
|---|---|
| fsuppssindlem1.z | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppssindlem1.v | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| fsuppssindlem1.1 | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| fsuppssindlem1.2 | ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| fsuppssindlem1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppssindlem1.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 2 | 1 | feqmptd 6946 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 3 | fvres 6894 | . . . . 5 ⊢ (𝑥 ∈ 𝑆 → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝑆) → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) |
| 5 | eldif 3936 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ 𝑆) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) | |
| 6 | fsuppssindlem1.2 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) | |
| 7 | fsuppssindlem1.v | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | fsuppssindlem1.z | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 9 | 1, 6, 7, 8 | suppssr 8192 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → (𝐹‘𝑥) = 0 ) |
| 10 | 9 | eqcomd 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → 0 = (𝐹‘𝑥)) |
| 11 | 5, 10 | sylan2br 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) → 0 = (𝐹‘𝑥)) |
| 12 | 11 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝑆) → 0 = (𝐹‘𝑥)) |
| 13 | 4, 12 | ifeqda 4537 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ) = (𝐹‘𝑥)) |
| 14 | 13 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 )) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 15 | 2, 14 | eqtr4d 2773 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ifcif 4500 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 supp csupp 8157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-supp 8158 |
| This theorem is referenced by: fsuppssind 42563 |
| Copyright terms: Public domain | W3C validator |