Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppssindlem1 | Structured version Visualization version GIF version |
Description: Lemma for fsuppssind 40205. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.) |
Ref | Expression |
---|---|
fsuppssindlem1.z | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppssindlem1.v | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
fsuppssindlem1.1 | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
fsuppssindlem1.2 | ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) |
Ref | Expression |
---|---|
fsuppssindlem1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppssindlem1.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | 1 | feqmptd 6819 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
3 | fvres 6775 | . . . . 5 ⊢ (𝑥 ∈ 𝑆 → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝑆) → ((𝐹 ↾ 𝑆)‘𝑥) = (𝐹‘𝑥)) |
5 | eldif 3893 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ 𝑆) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) | |
6 | fsuppssindlem1.2 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆) | |
7 | fsuppssindlem1.v | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | fsuppssindlem1.z | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ 𝑊) | |
9 | 1, 6, 7, 8 | suppssr 7983 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → (𝐹‘𝑥) = 0 ) |
10 | 9 | eqcomd 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑆)) → 0 = (𝐹‘𝑥)) |
11 | 5, 10 | sylan2br 594 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆)) → 0 = (𝐹‘𝑥)) |
12 | 11 | anassrs 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝑆) → 0 = (𝐹‘𝑥)) |
13 | 4, 12 | ifeqda 4492 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ) = (𝐹‘𝑥)) |
14 | 13 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 )) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
15 | 2, 14 | eqtr4d 2781 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, ((𝐹 ↾ 𝑆)‘𝑥), 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ifcif 4456 ↦ cmpt 5153 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: fsuppssind 40205 |
Copyright terms: Public domain | W3C validator |