Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem1 Structured version   Visualization version   GIF version

Theorem fsuppssindlem1 40501
Description: Lemma for fsuppssind 40503. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem1.z (𝜑0𝑊)
fsuppssindlem1.v (𝜑𝐼𝑉)
fsuppssindlem1.1 (𝜑𝐹:𝐼𝐵)
fsuppssindlem1.2 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆)
Assertion
Ref Expression
fsuppssindlem1 (𝜑𝐹 = (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem fsuppssindlem1
StepHypRef Expression
1 fsuppssindlem1.1 . . 3 (𝜑𝐹:𝐼𝐵)
21feqmptd 6876 . 2 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3 fvres 6830 . . . . 5 (𝑥𝑆 → ((𝐹𝑆)‘𝑥) = (𝐹𝑥))
43adantl 482 . . . 4 (((𝜑𝑥𝐼) ∧ 𝑥𝑆) → ((𝐹𝑆)‘𝑥) = (𝐹𝑥))
5 eldif 3906 . . . . . 6 (𝑥 ∈ (𝐼𝑆) ↔ (𝑥𝐼 ∧ ¬ 𝑥𝑆))
6 fsuppssindlem1.2 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆)
7 fsuppssindlem1.v . . . . . . . 8 (𝜑𝐼𝑉)
8 fsuppssindlem1.z . . . . . . . 8 (𝜑0𝑊)
91, 6, 7, 8suppssr 8060 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝑆)) → (𝐹𝑥) = 0 )
109eqcomd 2742 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝑆)) → 0 = (𝐹𝑥))
115, 10sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑥𝐼 ∧ ¬ 𝑥𝑆)) → 0 = (𝐹𝑥))
1211anassrs 468 . . . 4 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝑆) → 0 = (𝐹𝑥))
134, 12ifeqda 4506 . . 3 ((𝜑𝑥𝐼) → if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 ) = (𝐹𝑥))
1413mpteq2dva 5186 . 2 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )) = (𝑥𝐼 ↦ (𝐹𝑥)))
152, 14eqtr4d 2779 1 (𝜑𝐹 = (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3893  wss 3896  ifcif 4470  cmpt 5169  cres 5609  wf 6461  cfv 6465  (class class class)co 7316   supp csupp 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-supp 8026
This theorem is referenced by:  fsuppssind  40503
  Copyright terms: Public domain W3C validator