Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem1 Structured version   Visualization version   GIF version

Theorem fsuppssindlem1 42561
Description: Lemma for fsuppssind 42563. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem1.z (𝜑0𝑊)
fsuppssindlem1.v (𝜑𝐼𝑉)
fsuppssindlem1.1 (𝜑𝐹:𝐼𝐵)
fsuppssindlem1.2 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆)
Assertion
Ref Expression
fsuppssindlem1 (𝜑𝐹 = (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem fsuppssindlem1
StepHypRef Expression
1 fsuppssindlem1.1 . . 3 (𝜑𝐹:𝐼𝐵)
21feqmptd 6946 . 2 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3 fvres 6894 . . . . 5 (𝑥𝑆 → ((𝐹𝑆)‘𝑥) = (𝐹𝑥))
43adantl 481 . . . 4 (((𝜑𝑥𝐼) ∧ 𝑥𝑆) → ((𝐹𝑆)‘𝑥) = (𝐹𝑥))
5 eldif 3936 . . . . . 6 (𝑥 ∈ (𝐼𝑆) ↔ (𝑥𝐼 ∧ ¬ 𝑥𝑆))
6 fsuppssindlem1.2 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆)
7 fsuppssindlem1.v . . . . . . . 8 (𝜑𝐼𝑉)
8 fsuppssindlem1.z . . . . . . . 8 (𝜑0𝑊)
91, 6, 7, 8suppssr 8192 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝑆)) → (𝐹𝑥) = 0 )
109eqcomd 2741 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝑆)) → 0 = (𝐹𝑥))
115, 10sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑥𝐼 ∧ ¬ 𝑥𝑆)) → 0 = (𝐹𝑥))
1211anassrs 467 . . . 4 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝑆) → 0 = (𝐹𝑥))
134, 12ifeqda 4537 . . 3 ((𝜑𝑥𝐼) → if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 ) = (𝐹𝑥))
1413mpteq2dva 5214 . 2 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )) = (𝑥𝐼 ↦ (𝐹𝑥)))
152, 14eqtr4d 2773 1 (𝜑𝐹 = (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  ifcif 4500  cmpt 5201  cres 5656  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-supp 8158
This theorem is referenced by:  fsuppssind  42563
  Copyright terms: Public domain W3C validator