MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fulli Structured version   Visualization version   GIF version

Theorem fulli 17931
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
isfull.h 𝐻 = (Hom ‘𝐶)
fullfo.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullfo.x (𝜑𝑋𝐵)
fullfo.y (𝜑𝑌𝐵)
fulli.r (𝜑𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Assertion
Ref Expression
fulli (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐻   𝑓,𝐽   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐺
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fulli
StepHypRef Expression
1 isfull.b . . 3 𝐵 = (Base‘𝐶)
2 isfull.j . . 3 𝐽 = (Hom ‘𝐷)
3 isfull.h . . 3 𝐻 = (Hom ‘𝐶)
4 fullfo.f . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5 fullfo.x . . 3 (𝜑𝑋𝐵)
6 fullfo.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6fullfo 17930 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
8 fulli.r . 2 (𝜑𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
9 foelrn 7107 . 2 (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ 𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
107, 8, 9syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5123  ontowfo 6539  cfv 6541  (class class class)co 7413  Basecbs 17229  Hom chom 17284   Full cful 17920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-ixp 8920  df-func 17874  df-full 17922
This theorem is referenced by:  ffthiso  17947
  Copyright terms: Public domain W3C validator