MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fulli Structured version   Visualization version   GIF version

Theorem fulli 17629
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
isfull.h 𝐻 = (Hom ‘𝐶)
fullfo.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullfo.x (𝜑𝑋𝐵)
fullfo.y (𝜑𝑌𝐵)
fulli.r (𝜑𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
Assertion
Ref Expression
fulli (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐻   𝑓,𝐽   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐺
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fulli
StepHypRef Expression
1 isfull.b . . 3 𝐵 = (Base‘𝐶)
2 isfull.j . . 3 𝐽 = (Hom ‘𝐷)
3 isfull.h . . 3 𝐻 = (Hom ‘𝐶)
4 fullfo.f . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5 fullfo.x . . 3 (𝜑𝑋𝐵)
6 fullfo.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6fullfo 17628 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
8 fulli.r . 2 (𝜑𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
9 foelrn 6982 . 2 (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ 𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
107, 8, 9syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  ontowfo 6431  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973   Full cful 17618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-func 17573  df-full 17620
This theorem is referenced by:  ffthiso  17645
  Copyright terms: Public domain W3C validator