Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fulli | Structured version Visualization version GIF version |
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullfo.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullfo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullfo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
fulli.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Ref | Expression |
---|---|
fulli | ⊢ (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfull.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfull.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
3 | isfull.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | fullfo.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
5 | fullfo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | fullfo.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | fullfo 17234 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | fulli.r | . 2 ⊢ (𝜑 → 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
9 | foelrn 6864 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) | |
10 | 7, 8, 9 | syl2anc 588 | 1 ⊢ (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 class class class wbr 5033 –onto→wfo 6334 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 Hom chom 16627 Full cful 17224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 df-ixp 8481 df-func 17180 df-full 17226 |
This theorem is referenced by: ffthiso 17251 |
Copyright terms: Public domain | W3C validator |