![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fulli | Structured version Visualization version GIF version |
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullfo.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullfo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullfo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
fulli.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Ref | Expression |
---|---|
fulli | ⊢ (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfull.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfull.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
3 | isfull.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | fullfo.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
5 | fullfo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | fullfo.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | fullfo 17859 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | fulli.r | . 2 ⊢ (𝜑 → 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
9 | foelrn 7104 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ 𝑅 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) | |
10 | 7, 8, 9 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 class class class wbr 5147 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 Hom chom 17204 Full cful 17849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-ixp 8888 df-func 17804 df-full 17851 |
This theorem is referenced by: ffthiso 17876 |
Copyright terms: Public domain | W3C validator |