Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for funcestrcsetc 17866. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
funcestrcsetc.m | ⊢ 𝑀 = (Base‘𝑋) |
funcestrcsetc.n | ⊢ 𝑁 = (Base‘𝑌) |
Ref | Expression |
---|---|
funcestrcsetclem6 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
8 | funcestrcsetc.m | . . . . 5 ⊢ 𝑀 = (Base‘𝑋) | |
9 | funcestrcsetc.n | . . . . 5 ⊢ 𝑁 = (Base‘𝑌) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | funcestrcsetclem5 17861 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
11 | 10 | 3adant3 1131 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
12 | 11 | fveq1d 6776 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑁 ↑m 𝑀))‘𝐻)) |
13 | fvresi 7045 | . . 3 ⊢ (𝐻 ∈ (𝑁 ↑m 𝑀) → (( I ↾ (𝑁 ↑m 𝑀))‘𝐻) = 𝐻) | |
14 | 13 | 3ad2ant3 1134 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → (( I ↾ (𝑁 ↑m 𝑀))‘𝐻) = 𝐻) |
15 | 12, 14 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 WUnicwun 10456 Basecbs 16912 SetCatcsetc 17790 ExtStrCatcestrc 17838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: funcestrcsetclem9 17865 fthestrcsetc 17867 fullestrcsetc 17868 |
Copyright terms: Public domain | W3C validator |