Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for funcestrcsetc 17782. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
funcestrcsetc.m | ⊢ 𝑀 = (Base‘𝑋) |
funcestrcsetc.n | ⊢ 𝑁 = (Base‘𝑌) |
Ref | Expression |
---|---|
funcestrcsetclem6 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
8 | funcestrcsetc.m | . . . . 5 ⊢ 𝑀 = (Base‘𝑋) | |
9 | funcestrcsetc.n | . . . . 5 ⊢ 𝑁 = (Base‘𝑌) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | funcestrcsetclem5 17777 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
11 | 10 | 3adant3 1130 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
12 | 11 | fveq1d 6758 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑁 ↑m 𝑀))‘𝐻)) |
13 | fvresi 7027 | . . 3 ⊢ (𝐻 ∈ (𝑁 ↑m 𝑀) → (( I ↾ (𝑁 ↑m 𝑀))‘𝐻) = 𝐻) | |
14 | 13 | 3ad2ant3 1133 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → (( I ↾ (𝑁 ↑m 𝑀))‘𝐻) = 𝐻) |
15 | 12, 14 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 WUnicwun 10387 Basecbs 16840 SetCatcsetc 17706 ExtStrCatcestrc 17754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: funcestrcsetclem9 17781 fthestrcsetc 17783 fullestrcsetc 17784 |
Copyright terms: Public domain | W3C validator |