MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem6 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem6 17862
Description: Lemma 6 for funcestrcsetc 17866. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
funcestrcsetc.m 𝑀 = (Base‘𝑋)
funcestrcsetc.n 𝑁 = (Base‘𝑌)
Assertion
Ref Expression
funcestrcsetclem6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem funcestrcsetclem6
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
8 funcestrcsetc.m . . . . 5 𝑀 = (Base‘𝑋)
9 funcestrcsetc.n . . . . 5 𝑁 = (Base‘𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9funcestrcsetclem5 17861 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
11103adant3 1131 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
1211fveq1d 6776 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑁m 𝑀))‘𝐻))
13 fvresi 7045 . . 3 (𝐻 ∈ (𝑁m 𝑀) → (( I ↾ (𝑁m 𝑀))‘𝐻) = 𝐻)
14133ad2ant3 1134 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → (( I ↾ (𝑁m 𝑀))‘𝐻) = 𝐻)
1512, 14eqtrd 2778 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5157   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  WUnicwun 10456  Basecbs 16912  SetCatcsetc 17790  ExtStrCatcestrc 17838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  funcestrcsetclem9  17865  fthestrcsetc  17867  fullestrcsetc  17868
  Copyright terms: Public domain W3C validator