MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem6 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem6 18059
Description: Lemma 6 for funcestrcsetc 18063. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
funcestrcsetc.m 𝑀 = (Base‘𝑋)
funcestrcsetc.n 𝑁 = (Base‘𝑌)
Assertion
Ref Expression
funcestrcsetclem6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem funcestrcsetclem6
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
8 funcestrcsetc.m . . . . 5 𝑀 = (Base‘𝑋)
9 funcestrcsetc.n . . . . 5 𝑁 = (Base‘𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9funcestrcsetclem5 18058 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
11103adant3 1132 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
1211fveq1d 6833 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑁m 𝑀))‘𝐻))
13 fvresi 7116 . . 3 (𝐻 ∈ (𝑁m 𝑀) → (( I ↾ (𝑁m 𝑀))‘𝐻) = 𝐻)
14133ad2ant3 1135 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → (( I ↾ (𝑁m 𝑀))‘𝐻) = 𝐻)
1512, 14eqtrd 2768 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑁m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cmpt 5176   I cid 5515  cres 5623  cfv 6489  (class class class)co 7355  cmpo 7357  m cmap 8759  WUnicwun 10602  Basecbs 17127  SetCatcsetc 17990  ExtStrCatcestrc 18036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360
This theorem is referenced by:  funcestrcsetclem9  18062  fthestrcsetc  18064  fullestrcsetc  18065
  Copyright terms: Public domain W3C validator