MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthestrcsetc Structured version   Visualization version   GIF version

Theorem fthestrcsetc 18074
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fthestrcsetc (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18073 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18071 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2729 . . . . . . . . . . . . 13 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 5estrcbas 18049 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐸))
133, 12eqtr4id 2783 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = 𝑈)
1413eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐵𝑎𝑈))
1514biimpcd 249 . . . . . . . . . . . . . . 15 (𝑎𝐵 → (𝜑𝑎𝑈))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
1716impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
1813eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐵𝑏𝑈))
1918biimpcd 249 . . . . . . . . . . . . . . 15 (𝑏𝐵 → (𝜑𝑏𝑈))
2019adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
2120impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
22 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑎) = (Base‘𝑎)
23 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑏) = (Base‘𝑏)
241, 10, 11, 17, 21, 22, 23estrchom 18051 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2524eleq2d 2814 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
261, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18069 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘) = )
27263expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘) = ))
2825, 27sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2928com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3029adantr 480 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3130impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3224eleq2d 2814 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
331, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18069 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
34333expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3532, 34sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3736adantl 481 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3837impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3931, 38eqeq12d 2745 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4039biimpd 229 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
4140ralrimivva 3172 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
42 dff13 7195 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
439, 41, 42sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
4443ralrimivva 3172 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
45 eqid 2729 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
463, 11, 45isfth2 17842 . 2 (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
478, 44, 46sylanbrc 583 1 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cmpt 5176   I cid 5517  cres 5625  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  WUnicwun 10613  Basecbs 17138  Hom chom 17190   Func cfunc 17779   Faith cfth 17830  SetCatcsetc 18000  ExtStrCatcestrc 18046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-wun 10615  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-func 17783  df-fth 17832  df-setc 18001  df-estrc 18047
This theorem is referenced by:  equivestrcsetc  18076
  Copyright terms: Public domain W3C validator