MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthestrcsetc Structured version   Visualization version   GIF version

Theorem fthestrcsetc 18170
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fthestrcsetc (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18169 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18167 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2734 . . . . . . . . . . . . 13 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 5estrcbas 18145 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐸))
133, 12eqtr4id 2788 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = 𝑈)
1413eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐵𝑎𝑈))
1514biimpcd 249 . . . . . . . . . . . . . . 15 (𝑎𝐵 → (𝜑𝑎𝑈))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
1716impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
1813eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐵𝑏𝑈))
1918biimpcd 249 . . . . . . . . . . . . . . 15 (𝑏𝐵 → (𝜑𝑏𝑈))
2019adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
2120impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
22 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝑎) = (Base‘𝑎)
23 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝑏) = (Base‘𝑏)
241, 10, 11, 17, 21, 22, 23estrchom 18147 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2524eleq2d 2819 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
261, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘) = )
27263expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘) = ))
2825, 27sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2928com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3029adantr 480 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3130impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3224eleq2d 2819 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
331, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
34333expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3532, 34sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3736adantl 481 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3837impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3931, 38eqeq12d 2750 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4039biimpd 229 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
4140ralrimivva 3189 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
42 dff13 7258 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
439, 41, 42sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
4443ralrimivva 3189 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
45 eqid 2734 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
463, 11, 45isfth2 17938 . 2 (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
478, 44, 46sylanbrc 583 1 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5125  cmpt 5207   I cid 5559  cres 5669  wf 6538  1-1wf1 6539  cfv 6542  (class class class)co 7414  cmpo 7416  m cmap 8849  WUnicwun 10723  Basecbs 17230  Hom chom 17288   Func cfunc 17875   Faith cfth 17926  SetCatcsetc 18096  ExtStrCatcestrc 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-wun 10725  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17301  df-cco 17302  df-cat 17687  df-cid 17688  df-func 17879  df-fth 17928  df-setc 18097  df-estrc 18143
This theorem is referenced by:  equivestrcsetc  18172
  Copyright terms: Public domain W3C validator