MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthestrcsetc Structured version   Visualization version   GIF version

Theorem fthestrcsetc 17783
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fthestrcsetc (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 17782 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 17780 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2738 . . . . . . . . . . . . 13 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 5estrcbas 17757 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐸))
133, 12eqtr4id 2798 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = 𝑈)
1413eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐵𝑎𝑈))
1514biimpcd 248 . . . . . . . . . . . . . . 15 (𝑎𝐵 → (𝜑𝑎𝑈))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
1716impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
1813eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐵𝑏𝑈))
1918biimpcd 248 . . . . . . . . . . . . . . 15 (𝑏𝐵 → (𝜑𝑏𝑈))
2019adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
2120impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
22 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑎) = (Base‘𝑎)
23 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑏) = (Base‘𝑏)
241, 10, 11, 17, 21, 22, 23estrchom 17759 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2524eleq2d 2824 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
261, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 17778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘) = )
27263expia 1119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘) = ))
2825, 27sylbid 239 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2928com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3029adantr 480 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3130impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3224eleq2d 2824 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
331, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 17778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
34333expia 1119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3532, 34sylbid 239 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3736adantl 481 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3837impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3931, 38eqeq12d 2754 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4039biimpd 228 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
4140ralrimivva 3114 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
42 dff13 7109 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
439, 41, 42sylanbrc 582 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
4443ralrimivva 3114 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
45 eqid 2738 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
463, 11, 45isfth2 17547 . 2 (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
478, 44, 46sylanbrc 582 1 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cmpt 5153   I cid 5479  cres 5582  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  WUnicwun 10387  Basecbs 16840  Hom chom 16899   Func cfunc 17485   Faith cfth 17535  SetCatcsetc 17706  ExtStrCatcestrc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-wun 10389  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-func 17489  df-fth 17537  df-setc 17707  df-estrc 17755
This theorem is referenced by:  equivestrcsetc  17785
  Copyright terms: Public domain W3C validator