| Step | Hyp | Ref
| Expression |
| 1 | | funcestrcsetc.e |
. . 3
⊢ 𝐸 = (ExtStrCat‘𝑈) |
| 2 | | funcestrcsetc.s |
. . 3
⊢ 𝑆 = (SetCat‘𝑈) |
| 3 | | funcestrcsetc.b |
. . 3
⊢ 𝐵 = (Base‘𝐸) |
| 4 | | funcestrcsetc.c |
. . 3
⊢ 𝐶 = (Base‘𝑆) |
| 5 | | funcestrcsetc.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 6 | | funcestrcsetc.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 7 | | funcestrcsetc.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))))) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | funcestrcsetc 18169 |
. 2
⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) |
| 9 | 1, 2, 3, 4, 5, 6, 7 | funcestrcsetclem8 18167 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏))) |
| 10 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑈 ∈ WUni) |
| 11 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 12 | 1, 5 | estrcbas 18145 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 13 | 3, 12 | eqtr4id 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = 𝑈) |
| 14 | 13 | eleq2d 2819 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ 𝑈)) |
| 15 | 14 | biimpcd 249 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝐵 → (𝜑 → 𝑎 ∈ 𝑈)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝜑 → 𝑎 ∈ 𝑈)) |
| 17 | 16 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝑈) |
| 18 | 13 | eleq2d 2819 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ 𝑈)) |
| 19 | 18 | biimpcd 249 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐵 → (𝜑 → 𝑏 ∈ 𝑈)) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝜑 → 𝑏 ∈ 𝑈)) |
| 21 | 20 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝑈) |
| 22 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑎) =
(Base‘𝑎) |
| 23 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑏) =
(Base‘𝑏) |
| 24 | 1, 10, 11, 17, 21, 22, 23 | estrchom 18147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎))) |
| 25 | 24 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 22, 23 | funcestrcsetclem6 18165 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘ℎ) = ℎ) |
| 27 | 26 | 3expia 1121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
| 28 | 25, 27 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
| 29 | 28 | com12 32 |
. . . . . . . . 9
⊢ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
| 30 | 29 | adantr 480 |
. . . . . . . 8
⊢ ((ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
| 31 | 30 | impcom 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘ℎ) = ℎ) |
| 32 | 24 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
| 33 | 1, 2, 3, 4, 5, 6, 7, 22, 23 | funcestrcsetclem6 18165 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘) |
| 34 | 33 | 3expia 1121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
| 35 | 32, 34 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
| 36 | 35 | com12 32 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
| 37 | 36 | adantl 481 |
. . . . . . . 8
⊢ ((ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
| 38 | 37 | impcom 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘) |
| 39 | 31, 38 | eqeq12d 2750 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) ↔ ℎ = 𝑘)) |
| 40 | 39 | biimpd 229 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘)) |
| 41 | 40 | ralrimivva 3189 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀ℎ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘)) |
| 42 | | dff13 7258 |
. . . 4
⊢ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏)) ∧ ∀ℎ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘))) |
| 43 | 9, 41, 42 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏))) |
| 44 | 43 | ralrimivva 3189 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏))) |
| 45 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
| 46 | 3, 11, 45 | isfth2 17938 |
. 2
⊢ (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏)))) |
| 47 | 8, 44, 46 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) |