MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthestrcsetc Structured version   Visualization version   GIF version

Theorem fthestrcsetc 18117
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fthestrcsetc (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18116 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18114 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2730 . . . . . . . . . . . . 13 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 5estrcbas 18092 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐸))
133, 12eqtr4id 2784 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = 𝑈)
1413eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐵𝑎𝑈))
1514biimpcd 249 . . . . . . . . . . . . . . 15 (𝑎𝐵 → (𝜑𝑎𝑈))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
1716impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
1813eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐵𝑏𝑈))
1918biimpcd 249 . . . . . . . . . . . . . . 15 (𝑏𝐵 → (𝜑𝑏𝑈))
2019adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
2120impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
22 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑎) = (Base‘𝑎)
23 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑏) = (Base‘𝑏)
241, 10, 11, 17, 21, 22, 23estrchom 18094 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2524eleq2d 2815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
261, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘) = )
27263expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘) = ))
2825, 27sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2928com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3029adantr 480 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3130impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3224eleq2d 2815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
331, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 18112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
34333expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3532, 34sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3736adantl 481 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3837impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3931, 38eqeq12d 2746 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4039biimpd 229 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
4140ralrimivva 3181 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
42 dff13 7231 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
439, 41, 42sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
4443ralrimivva 3181 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
45 eqid 2730 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
463, 11, 45isfth2 17885 . 2 (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
478, 44, 46sylanbrc 583 1 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5109  cmpt 5190   I cid 5534  cres 5642  wf 6509  1-1wf1 6510  cfv 6513  (class class class)co 7389  cmpo 7391  m cmap 8801  WUnicwun 10659  Basecbs 17185  Hom chom 17237   Func cfunc 17822   Faith cfth 17873  SetCatcsetc 18043  ExtStrCatcestrc 18089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-wun 10661  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-fth 17875  df-setc 18044  df-estrc 18090
This theorem is referenced by:  equivestrcsetc  18119
  Copyright terms: Public domain W3C validator