| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimpthslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for upgrimpths 48008. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimpths.p | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimpthslem1 | ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimpths.p | . . . 4 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | |
| 2 | ispth 29699 | . . . . 5 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 3 | 2 | simp2bi 1146 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 5 | upgrimwlk.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | 6, 7 | grimf1o 47983 | . . . 4 ⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 9 | dff1o3 6769 | . . . . 5 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun ◡𝑁)) | |
| 10 | 9 | simprbi 496 | . . . 4 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun ◡𝑁) |
| 11 | 5, 8, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun ◡𝑁) |
| 12 | funco 6521 | . . 3 ⊢ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ Fun ◡𝑁) → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) | |
| 13 | 4, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 14 | resco 6197 | . . . . 5 ⊢ ((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) | |
| 15 | 14 | cnveqi 5813 | . . . 4 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) |
| 16 | cnvco 5824 | . . . 4 ⊢ ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) | |
| 17 | 15, 16 | eqtri 2754 | . . 3 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) |
| 18 | 17 | funeqi 6502 | . 2 ⊢ (Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) ↔ Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 19 | 13, 18 | sylibr 234 | 1 ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4280 {cpr 4575 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 “ cima 5617 ∘ ccom 5618 Fun wfun 6475 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ..^cfzo 13554 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 USPGraphcuspgr 29126 Trailsctrls 29667 Pathscpths 29688 GraphIso cgrim 47974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-trls 29669 df-pths 29692 df-grim 47977 |
| This theorem is referenced by: upgrimpths 48008 |
| Copyright terms: Public domain | W3C validator |