| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimpthslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for upgrimpths 47903. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimpths.p | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimpthslem1 | ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimpths.p | . . . 4 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | |
| 2 | ispth 29702 | . . . . 5 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 3 | 2 | simp2bi 1146 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 5 | upgrimwlk.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | 6, 7 | grimf1o 47878 | . . . 4 ⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 9 | dff1o3 6788 | . . . . 5 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun ◡𝑁)) | |
| 10 | 9 | simprbi 496 | . . . 4 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun ◡𝑁) |
| 11 | 5, 8, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun ◡𝑁) |
| 12 | funco 6540 | . . 3 ⊢ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ Fun ◡𝑁) → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) | |
| 13 | 4, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 14 | resco 6211 | . . . . 5 ⊢ ((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) | |
| 15 | 14 | cnveqi 5828 | . . . 4 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) |
| 16 | cnvco 5839 | . . . 4 ⊢ ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) | |
| 17 | 15, 16 | eqtri 2752 | . . 3 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) |
| 18 | 17 | funeqi 6521 | . 2 ⊢ (Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) ↔ Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 19 | 13, 18 | sylibr 234 | 1 ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ∅c0 4292 {cpr 4587 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 ↾ cres 5633 “ cima 5634 ∘ ccom 5635 Fun wfun 6493 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11046 1c1 11047 ..^cfzo 13593 ♯chash 14273 Vtxcvtx 28977 iEdgciedg 28978 USPGraphcuspgr 29129 Trailsctrls 29670 Pathscpths 29691 GraphIso cgrim 47869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-trls 29672 df-pths 29695 df-grim 47872 |
| This theorem is referenced by: upgrimpths 47903 |
| Copyright terms: Public domain | W3C validator |