Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimpthslem1 Structured version   Visualization version   GIF version

Theorem upgrimpthslem1 47911
Description: Lemma 1 for upgrimpths 47913. (Contributed by AV, 30-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimpths.p (𝜑𝐹(Paths‘𝐺)𝑃)
Assertion
Ref Expression
upgrimpthslem1 (𝜑 → Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem upgrimpthslem1
StepHypRef Expression
1 upgrimpths.p . . . 4 (𝜑𝐹(Paths‘𝐺)𝑃)
2 ispth 29658 . . . . 5 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
32simp2bi 1146 . . . 4 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
41, 3syl 17 . . 3 (𝜑 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
5 upgrimwlk.n . . . 4 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 eqid 2730 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2730 . . . . 5 (Vtx‘𝐻) = (Vtx‘𝐻)
86, 7grimf1o 47888 . . . 4 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
9 dff1o3 6809 . . . . 5 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun 𝑁))
109simprbi 496 . . . 4 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun 𝑁)
115, 8, 103syl 18 . . 3 (𝜑 → Fun 𝑁)
12 funco 6559 . . 3 ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ Fun 𝑁) → Fun ((𝑃 ↾ (1..^(♯‘𝐹))) ∘ 𝑁))
134, 11, 12syl2anc 584 . 2 (𝜑 → Fun ((𝑃 ↾ (1..^(♯‘𝐹))) ∘ 𝑁))
14 resco 6226 . . . . 5 ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) = (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹))))
1514cnveqi 5841 . . . 4 ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) = (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹))))
16 cnvco 5852 . . . 4 (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) = ((𝑃 ↾ (1..^(♯‘𝐹))) ∘ 𝑁)
1715, 16eqtri 2753 . . 3 ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (1..^(♯‘𝐹))) ∘ 𝑁)
1817funeqi 6540 . 2 (Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (1..^(♯‘𝐹))) ∘ 𝑁))
1913, 18sylibr 234 1 (𝜑 → Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  c0 4299  {cpr 4594   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  ccom 5645  Fun wfun 6508  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  ..^cfzo 13622  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  USPGraphcuspgr 29082  Trailsctrls 29625  Pathscpths 29647   GraphIso cgrim 47879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-trls 29627  df-pths 29651  df-grim 47882
This theorem is referenced by:  upgrimpths  47913
  Copyright terms: Public domain W3C validator