| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimpthslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for upgrimpths 47870. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimpths.p | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimpthslem1 | ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimpths.p | . . . 4 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | |
| 2 | ispth 29649 | . . . . 5 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 3 | 2 | simp2bi 1146 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 5 | upgrimwlk.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | 6, 7 | grimf1o 47845 | . . . 4 ⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 9 | dff1o3 6823 | . . . . 5 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun ◡𝑁)) | |
| 10 | 9 | simprbi 496 | . . . 4 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun ◡𝑁) |
| 11 | 5, 8, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → Fun ◡𝑁) |
| 12 | funco 6575 | . . 3 ⊢ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ Fun ◡𝑁) → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) | |
| 13 | 4, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 14 | resco 6239 | . . . . 5 ⊢ ((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) | |
| 15 | 14 | cnveqi 5854 | . . . 4 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) |
| 16 | cnvco 5865 | . . . 4 ⊢ ◡(𝑁 ∘ (𝑃 ↾ (1..^(♯‘𝐹)))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) | |
| 17 | 15, 16 | eqtri 2758 | . . 3 ⊢ ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) = (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁) |
| 18 | 17 | funeqi 6556 | . 2 ⊢ (Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) ↔ Fun (◡(𝑃 ↾ (1..^(♯‘𝐹))) ∘ ◡𝑁)) |
| 19 | 13, 18 | sylibr 234 | 1 ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ∅c0 4308 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 “ cima 5657 ∘ ccom 5658 Fun wfun 6524 –onto→wfo 6528 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ..^cfzo 13669 ♯chash 14346 Vtxcvtx 28921 iEdgciedg 28922 USPGraphcuspgr 29073 Trailsctrls 29616 Pathscpths 29638 GraphIso cgrim 47836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-trls 29618 df-pths 29642 df-grim 47839 |
| This theorem is referenced by: upgrimpths 47870 |
| Copyright terms: Public domain | W3C validator |