| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimspths | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimspths.s | ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimspths | ⊢ (𝜑 → 𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimspths.s | . . . 4 ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) | |
| 8 | spthispth 29669 | . . . 4 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 9 | pthistrl 29668 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 10 | 7, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | upgrimtrls 47900 | . 2 ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| 12 | isspth 29667 | . . . . . 6 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 13 | 12 | simprbi 496 | . . . . 5 ⊢ (𝐹(SPaths‘𝐺)𝑃 → Fun ◡𝑃) |
| 14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝜑 → Fun ◡𝑃) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 17 | 15, 16 | grimf1o 47878 | . . . . 5 ⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 18 | dff1o3 6770 | . . . . . 6 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun ◡𝑁)) | |
| 19 | 18 | simprbi 496 | . . . . 5 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun ◡𝑁) |
| 20 | 5, 17, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun ◡𝑁) |
| 21 | funco 6522 | . . . 4 ⊢ ((Fun ◡𝑃 ∧ Fun ◡𝑁) → Fun (◡𝑃 ∘ ◡𝑁)) | |
| 22 | 14, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (◡𝑃 ∘ ◡𝑁)) |
| 23 | cnvco 5828 | . . . 4 ⊢ ◡(𝑁 ∘ 𝑃) = (◡𝑃 ∘ ◡𝑁) | |
| 24 | 23 | funeqi 6503 | . . 3 ⊢ (Fun ◡(𝑁 ∘ 𝑃) ↔ Fun (◡𝑃 ∘ ◡𝑁)) |
| 25 | 22, 24 | sylibr 234 | . 2 ⊢ (𝜑 → Fun ◡(𝑁 ∘ 𝑃)) |
| 26 | isspth 29667 | . 2 ⊢ (𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡(𝑁 ∘ 𝑃))) | |
| 27 | 11, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ∘ ccom 5623 Fun wfun 6476 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Vtxcvtx 28941 iEdgciedg 28942 USPGraphcuspgr 29093 Trailsctrls 29634 Pathscpths 29655 SPathscspths 29656 GraphIso cgrim 47869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-edg 28993 df-uhgr 29003 df-upgr 29027 df-uspgr 29095 df-wlks 29545 df-trls 29636 df-pths 29659 df-spths 29660 df-grim 47872 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |