| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimspths | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimspths.s | ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimspths | ⊢ (𝜑 → 𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimspths.s | . . . 4 ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) | |
| 8 | spthispth 29704 | . . . 4 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 9 | pthistrl 29703 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 10 | 7, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | upgrimtrls 47899 | . 2 ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| 12 | isspth 29702 | . . . . . 6 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 13 | 12 | simprbi 496 | . . . . 5 ⊢ (𝐹(SPaths‘𝐺)𝑃 → Fun ◡𝑃) |
| 14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝜑 → Fun ◡𝑃) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 17 | 15, 16 | grimf1o 47877 | . . . . 5 ⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 18 | dff1o3 6788 | . . . . . 6 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ (𝑁:(Vtx‘𝐺)–onto→(Vtx‘𝐻) ∧ Fun ◡𝑁)) | |
| 19 | 18 | simprbi 496 | . . . . 5 ⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → Fun ◡𝑁) |
| 20 | 5, 17, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun ◡𝑁) |
| 21 | funco 6540 | . . . 4 ⊢ ((Fun ◡𝑃 ∧ Fun ◡𝑁) → Fun (◡𝑃 ∘ ◡𝑁)) | |
| 22 | 14, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (◡𝑃 ∘ ◡𝑁)) |
| 23 | cnvco 5839 | . . . 4 ⊢ ◡(𝑁 ∘ 𝑃) = (◡𝑃 ∘ ◡𝑁) | |
| 24 | 23 | funeqi 6521 | . . 3 ⊢ (Fun ◡(𝑁 ∘ 𝑃) ↔ Fun (◡𝑃 ∘ ◡𝑁)) |
| 25 | 22, 24 | sylibr 234 | . 2 ⊢ (𝜑 → Fun ◡(𝑁 ∘ 𝑃)) |
| 26 | isspth 29702 | . 2 ⊢ (𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡(𝑁 ∘ 𝑃))) | |
| 27 | 11, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ∘ ccom 5635 Fun wfun 6493 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Vtxcvtx 28976 iEdgciedg 28977 USPGraphcuspgr 29128 Trailsctrls 29669 Pathscpths 29690 SPathscspths 29691 GraphIso cgrim 47868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-wlks 29580 df-trls 29671 df-pths 29694 df-spths 29695 df-grim 47871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |