![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcringcsetcALTV2 46417. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | β’ π = (RingCatβπ) |
funcringcsetcALTV2.s | β’ π = (SetCatβπ) |
funcringcsetcALTV2.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV2.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV2.u | β’ (π β π β WUni) |
funcringcsetcALTV2.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV2.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem4 | β’ (π β πΊ Fn (π΅ Γ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) | |
2 | ovex 7395 | . . . 4 β’ (π₯ RingHom π¦) β V | |
3 | id 22 | . . . . 5 β’ ((π₯ RingHom π¦) β V β (π₯ RingHom π¦) β V) | |
4 | 3 | resiexd 7171 | . . . 4 β’ ((π₯ RingHom π¦) β V β ( I βΎ (π₯ RingHom π¦)) β V) |
5 | 2, 4 | ax-mp 5 | . . 3 β’ ( I βΎ (π₯ RingHom π¦)) β V |
6 | 1, 5 | fnmpoi 8007 | . 2 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) Fn (π΅ Γ π΅) |
7 | funcringcsetcALTV2.g | . . 3 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
8 | 7 | fneq1d 6600 | . 2 β’ (π β (πΊ Fn (π΅ Γ π΅) β (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) Fn (π΅ Γ π΅))) |
9 | 6, 8 | mpbiri 258 | 1 β’ (π β πΊ Fn (π΅ Γ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3448 β¦ cmpt 5193 I cid 5535 Γ cxp 5636 βΎ cres 5640 Fn wfn 6496 βcfv 6501 (class class class)co 7362 β cmpo 7364 WUnicwun 10643 Basecbs 17090 SetCatcsetc 17968 RingHom crh 20152 RingCatcringc 46375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 |
This theorem is referenced by: funcringcsetcALTV2 46417 |
Copyright terms: Public domain | W3C validator |