| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for funcringcsetcALTV2 48423. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
| funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2lem4 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) | |
| 2 | ovex 7385 | . . . 4 ⊢ (𝑥 RingHom 𝑦) ∈ V | |
| 3 | id 22 | . . . . 5 ⊢ ((𝑥 RingHom 𝑦) ∈ V → (𝑥 RingHom 𝑦) ∈ V) | |
| 4 | 3 | resiexd 7156 | . . . 4 ⊢ ((𝑥 RingHom 𝑦) ∈ V → ( I ↾ (𝑥 RingHom 𝑦)) ∈ V) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑥 RingHom 𝑦)) ∈ V |
| 6 | 1, 5 | fnmpoi 8008 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵) |
| 7 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
| 8 | 7 | fneq1d 6579 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵))) |
| 9 | 6, 8 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 I cid 5513 × cxp 5617 ↾ cres 5621 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 WUnicwun 10598 Basecbs 17122 SetCatcsetc 17984 RingHom crh 20389 RingCatcringc 20562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: funcringcsetcALTV2 48423 |
| Copyright terms: Public domain | W3C validator |