| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for funcringcsetcALTV2 48216. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
| funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2lem4 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) | |
| 2 | ovex 7427 | . . . 4 ⊢ (𝑥 RingHom 𝑦) ∈ V | |
| 3 | id 22 | . . . . 5 ⊢ ((𝑥 RingHom 𝑦) ∈ V → (𝑥 RingHom 𝑦) ∈ V) | |
| 4 | 3 | resiexd 7197 | . . . 4 ⊢ ((𝑥 RingHom 𝑦) ∈ V → ( I ↾ (𝑥 RingHom 𝑦)) ∈ V) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑥 RingHom 𝑦)) ∈ V |
| 6 | 1, 5 | fnmpoi 8058 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵) |
| 7 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
| 8 | 7 | fneq1d 6619 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵))) |
| 9 | 6, 8 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 I cid 5540 × cxp 5644 ↾ cres 5648 Fn wfn 6514 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 WUnicwun 10671 Basecbs 17185 SetCatcsetc 18043 RingHom crh 20384 RingCatcringc 20560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 |
| This theorem is referenced by: funcringcsetcALTV2 48216 |
| Copyright terms: Public domain | W3C validator |