![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for funcringcsetcALTV2 47473. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | β’ π = (RingCatβπ) |
funcringcsetcALTV2.s | β’ π = (SetCatβπ) |
funcringcsetcALTV2.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV2.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV2.u | β’ (π β π β WUni) |
funcringcsetcALTV2.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem3 | β’ (π β πΉ:π΅βΆπΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.r | . . . . . 6 β’ π = (RingCatβπ) | |
2 | funcringcsetcALTV2.b | . . . . . 6 β’ π΅ = (Baseβπ ) | |
3 | funcringcsetcALTV2.u | . . . . . 6 β’ (π β π β WUni) | |
4 | 1, 2, 3 | ringcbasbas 20610 | . . . . 5 β’ ((π β§ π₯ β π΅) β (Baseβπ₯) β π) |
5 | funcringcsetcALTV2.s | . . . . . . . 8 β’ π = (SetCatβπ) | |
6 | 5, 3 | setcbas 18066 | . . . . . . 7 β’ (π β π = (Baseβπ)) |
7 | 6 | eqcomd 2731 | . . . . . 6 β’ (π β (Baseβπ) = π) |
8 | 7 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β π΅) β (Baseβπ) = π) |
9 | 4, 8 | eleqtrrd 2828 | . . . 4 β’ ((π β§ π₯ β π΅) β (Baseβπ₯) β (Baseβπ)) |
10 | funcringcsetcALTV2.c | . . . 4 β’ πΆ = (Baseβπ) | |
11 | 9, 10 | eleqtrrdi 2836 | . . 3 β’ ((π β§ π₯ β π΅) β (Baseβπ₯) β πΆ) |
12 | 11 | fmpttd 7122 | . 2 β’ (π β (π₯ β π΅ β¦ (Baseβπ₯)):π΅βΆπΆ) |
13 | funcringcsetcALTV2.f | . . 3 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
14 | 13 | feq1d 6706 | . 2 β’ (π β (πΉ:π΅βΆπΆ β (π₯ β π΅ β¦ (Baseβπ₯)):π΅βΆπΆ)) |
15 | 12, 14 | mpbird 256 | 1 β’ (π β πΉ:π΅βΆπΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β¦ cmpt 5231 βΆwf 6543 βcfv 6547 WUnicwun 10723 Basecbs 17179 SetCatcsetc 18063 RingCatcringc 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-wun 10725 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-hom 17256 df-cco 17257 df-0g 17422 df-resc 17793 df-setc 18064 df-estrc 18112 df-mhm 18739 df-ghm 19172 df-mgp 20079 df-ur 20126 df-ring 20179 df-rhm 20415 df-ringc 20583 |
This theorem is referenced by: funcringcsetcALTV2 47473 |
Copyright terms: Public domain | W3C validator |