Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcringcsetcALTV2 45603. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
3 | oveq12 7284 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) | |
4 | 3 | adantl 482 | . . 3 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) |
5 | 4 | reseq2d 5891 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑥 RingHom 𝑦)) = ( I ↾ (𝑋 RingHom 𝑌))) |
6 | simprl 768 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simprr 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | ovexd 7310 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 RingHom 𝑌) ∈ V) | |
9 | 8 | resiexd 7092 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)) ∈ V) |
10 | 2, 5, 6, 7, 9 | ovmpod 7425 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 WUnicwun 10456 Basecbs 16912 SetCatcsetc 17790 RingHom crh 19956 RingCatcringc 45561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: funcringcsetcALTV2lem6 45599 funcringcsetcALTV2lem7 45600 funcringcsetcALTV2lem8 45601 funcringcsetcALTV2lem9 45602 |
Copyright terms: Public domain | W3C validator |