![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcringcsetcALTV2 43686. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
2 | 1 | adantr 473 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
3 | oveq12 6985 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) | |
4 | 3 | adantl 474 | . . 3 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) |
5 | 4 | reseq2d 5695 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑥 RingHom 𝑦)) = ( I ↾ (𝑋 RingHom 𝑌))) |
6 | simprl 758 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simprr 760 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | ovexd 7010 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 RingHom 𝑌) ∈ V) | |
9 | 8 | resiexd 6805 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)) ∈ V) |
10 | 2, 5, 6, 7, 9 | ovmpod 7118 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3415 ↦ cmpt 5008 I cid 5311 ↾ cres 5409 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 WUnicwun 9920 Basecbs 16339 SetCatcsetc 17193 RingHom crh 19187 RingCatcringc 43644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 |
This theorem is referenced by: funcringcsetcALTV2lem6 43682 funcringcsetcALTV2lem7 43683 funcringcsetcALTV2lem8 43684 funcringcsetcALTV2lem9 43685 |
Copyright terms: Public domain | W3C validator |