| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for funcringcsetcALTV2 48149. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
| funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2lem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
| 3 | oveq12 7421 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 RingHom 𝑦) = (𝑋 RingHom 𝑌)) |
| 5 | 4 | reseq2d 5977 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑥 RingHom 𝑦)) = ( I ↾ (𝑋 RingHom 𝑌))) |
| 6 | simprl 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simprr 772 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | ovexd 7447 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 RingHom 𝑌) ∈ V) | |
| 9 | 8 | resiexd 7217 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)) ∈ V) |
| 10 | 2, 5, 6, 7, 9 | ovmpod 7566 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 I cid 5557 ↾ cres 5667 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 WUnicwun 10721 Basecbs 17228 SetCatcsetc 18090 RingHom crh 20436 RingCatcringc 20612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 |
| This theorem is referenced by: funcringcsetcALTV2lem6 48145 funcringcsetcALTV2lem7 48146 funcringcsetcALTV2lem8 48147 funcringcsetcALTV2lem9 48148 |
| Copyright terms: Public domain | W3C validator |