![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem4ALTV | Structured version Visualization version GIF version |
Description: Lemma 4 for funcringcsetcALTV 48187. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetclem4ALTV | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) | |
2 | ovex 7468 | . . . 4 ⊢ (𝑥 RingHom 𝑦) ∈ V | |
3 | id 22 | . . . . 5 ⊢ ((𝑥 RingHom 𝑦) ∈ V → (𝑥 RingHom 𝑦) ∈ V) | |
4 | 3 | resiexd 7240 | . . . 4 ⊢ ((𝑥 RingHom 𝑦) ∈ V → ( I ↾ (𝑥 RingHom 𝑦)) ∈ V) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑥 RingHom 𝑦)) ∈ V |
6 | 1, 5 | fnmpoi 8100 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵) |
7 | funcringcsetcALTV.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 7 | fneq1d 6666 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵))) |
9 | 6, 8 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ↦ cmpt 5232 I cid 5583 × cxp 5688 ↾ cres 5692 Fn wfn 6561 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 WUnicwun 10744 Basecbs 17251 SetCatcsetc 18135 RingHom crh 20492 RingCatALTVcringcALTV 48152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-1st 8019 df-2nd 8020 |
This theorem is referenced by: funcringcsetcALTV 48187 |
Copyright terms: Public domain | W3C validator |