![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem4ALTV | Structured version Visualization version GIF version |
Description: Lemma 4 for funcringcsetcALTV 47496. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetclem4ALTV | β’ (π β πΊ Fn (π΅ Γ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) | |
2 | ovex 7450 | . . . 4 β’ (π₯ RingHom π¦) β V | |
3 | id 22 | . . . . 5 β’ ((π₯ RingHom π¦) β V β (π₯ RingHom π¦) β V) | |
4 | 3 | resiexd 7226 | . . . 4 β’ ((π₯ RingHom π¦) β V β ( I βΎ (π₯ RingHom π¦)) β V) |
5 | 2, 4 | ax-mp 5 | . . 3 β’ ( I βΎ (π₯ RingHom π¦)) β V |
6 | 1, 5 | fnmpoi 8073 | . 2 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) Fn (π΅ Γ π΅) |
7 | funcringcsetcALTV.g | . . 3 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
8 | 7 | fneq1d 6646 | . 2 β’ (π β (πΊ Fn (π΅ Γ π΅) β (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦))) Fn (π΅ Γ π΅))) |
9 | 6, 8 | mpbiri 257 | 1 β’ (π β πΊ Fn (π΅ Γ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 β¦ cmpt 5231 I cid 5574 Γ cxp 5675 βΎ cres 5679 Fn wfn 6542 βcfv 6547 (class class class)co 7417 β cmpo 7419 WUnicwun 10723 Basecbs 17179 SetCatcsetc 18063 RingHom crh 20412 RingCatALTVcringcALTV 47461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 |
This theorem is referenced by: funcringcsetcALTV 47496 |
Copyright terms: Public domain | W3C validator |