Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem3ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem3ALTV 48303
Description: Lemma 3 for funcringcsetcALTV 48310. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
Assertion
Ref Expression
funcringcsetclem3ALTV (𝜑𝐹:𝐵𝐶)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)

Proof of Theorem funcringcsetclem3ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . . 6 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.b . . . . . 6 𝐵 = (Base‘𝑅)
3 funcringcsetcALTV.u . . . . . 6 (𝜑𝑈 ∈ WUni)
41, 2, 3ringcbasbasALTV 48300 . . . . 5 ((𝜑𝑥𝐵) → (Base‘𝑥) ∈ 𝑈)
5 funcringcsetcALTV.s . . . . . . . 8 𝑆 = (SetCat‘𝑈)
65, 3setcbas 18040 . . . . . . 7 (𝜑𝑈 = (Base‘𝑆))
76eqcomd 2735 . . . . . 6 (𝜑 → (Base‘𝑆) = 𝑈)
87adantr 480 . . . . 5 ((𝜑𝑥𝐵) → (Base‘𝑆) = 𝑈)
94, 8eleqtrrd 2831 . . . 4 ((𝜑𝑥𝐵) → (Base‘𝑥) ∈ (Base‘𝑆))
10 funcringcsetcALTV.c . . . 4 𝐶 = (Base‘𝑆)
119, 10eleqtrrdi 2839 . . 3 ((𝜑𝑥𝐵) → (Base‘𝑥) ∈ 𝐶)
1211fmpttd 7087 . 2 (𝜑 → (𝑥𝐵 ↦ (Base‘𝑥)):𝐵𝐶)
13 funcringcsetcALTV.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1413feq1d 6670 . 2 (𝜑 → (𝐹:𝐵𝐶 ↔ (𝑥𝐵 ↦ (Base‘𝑥)):𝐵𝐶))
1512, 14mpbird 257 1 (𝜑𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  wf 6507  cfv 6511  WUnicwun 10653  Basecbs 17179  SetCatcsetc 18037  RingCatALTVcringcALTV 48275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wun 10655  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-setc 18038  df-ringcALTV 48276
This theorem is referenced by:  funcringcsetcALTV  48310
  Copyright terms: Public domain W3C validator