| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for funcsetcestrc 18067. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| Ref | Expression |
|---|---|
| funcsetcestrclem6 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrc.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem5 18062 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
| 9 | 8 | fveq1d 6824 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑌 ↑m 𝑋))‘𝐻)) |
| 10 | fvresi 7107 | . . 3 ⊢ (𝐻 ∈ (𝑌 ↑m 𝑋) → (( I ↾ (𝑌 ↑m 𝑋))‘𝐻) = 𝐻) | |
| 11 | 10 | 3ad2ant3 1135 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → (( I ↾ (𝑌 ↑m 𝑋))‘𝐻) = 𝐻) |
| 12 | 9, 11 | eqtrd 2766 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ↦ cmpt 5172 I cid 5510 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 ↑m cmap 8750 WUnicwun 10588 ndxcnx 17101 Basecbs 17117 SetCatcsetc 17979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: funcsetcestrclem9 18066 fthsetcestrc 18068 fullsetcestrc 18069 |
| Copyright terms: Public domain | W3C validator |