MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsetcestrc Structured version   Visualization version   GIF version

Theorem fthsetcestrc 18133
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fthsetcestrc (𝜑𝐹(𝑆 Faith 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 18132 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 18130 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2730 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
121, 4setcbas 18047 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝑆))
132, 12eqtr4id 2784 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 = 𝑈)
1413eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐶𝑎𝑈))
1514biimpcd 249 . . . . . . . . . . . . . . 15 (𝑎𝐶 → (𝜑𝑎𝑈))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
1716impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
1813eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐶𝑏𝑈))
1918biimpcd 249 . . . . . . . . . . . . . . 15 (𝑏𝐶 → (𝜑𝑏𝑈))
2019adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
2120impcom 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
221, 10, 11, 17, 21setchom 18049 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
2322eleq2d 2815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ ∈ (𝑏m 𝑎)))
241, 2, 3, 4, 5, 6funcsetcestrclem6 18128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘) = )
25243expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) → ((𝑎𝐺𝑏)‘) = ))
2623, 25sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2726com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘) = ))
2827adantr 480 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘) = ))
2928impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3022eleq2d 2815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ 𝑘 ∈ (𝑏m 𝑎)))
311, 2, 3, 4, 5, 6funcsetcestrclem6 18128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
32313expia 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑏m 𝑎) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3330, 32sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3433com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3534adantl 481 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635impcom 407 . . . . . . 7 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3729, 36eqeq12d 2746 . . . . . 6 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
3837biimpd 229 . . . . 5 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
3938ralrimivva 3181 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
40 dff13 7232 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
419, 39, 40sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
4241ralrimivva 3181 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
43 eqid 2730 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
442, 11, 43isfth2 17886 . 2 (𝐹(𝑆 Faith 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
458, 42, 44sylanbrc 583 1 (𝜑𝐹(𝑆 Faith 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   I cid 5535  cres 5643  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  m cmap 8802  WUnicwun 10660  ndxcnx 17170  Basecbs 17186  Hom chom 17238   Func cfunc 17823   Faith cfth 17874  SetCatcsetc 18044  ExtStrCatcestrc 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-wun 10662  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-plp 10943  df-ltp 10945  df-enr 11015  df-nr 11016  df-c 11081  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-fth 17876  df-setc 18045  df-estrc 18091
This theorem is referenced by:  embedsetcestrc  18135
  Copyright terms: Public domain W3C validator