Step | Hyp | Ref
| Expression |
1 | | funcsetcestrc.s |
. . 3
⊢ 𝑆 = (SetCat‘𝑈) |
2 | | funcsetcestrc.c |
. . 3
⊢ 𝐶 = (Base‘𝑆) |
3 | | funcsetcestrc.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
4 | | funcsetcestrc.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ WUni) |
5 | | funcsetcestrc.o |
. . 3
⊢ (𝜑 → ω ∈ 𝑈) |
6 | | funcsetcestrc.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
7 | | funcsetcestrc.e |
. . 3
⊢ 𝐸 = (ExtStrCat‘𝑈) |
8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrc 17797 |
. 2
⊢ (𝜑 → 𝐹(𝑆 Func 𝐸)𝐺) |
9 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem8 17795 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏))) |
10 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑈 ∈ WUni) |
11 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
12 | 1, 4 | setcbas 17709 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
13 | 2, 12 | eqtr4id 2798 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 = 𝑈) |
14 | 13 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑎 ∈ 𝐶 ↔ 𝑎 ∈ 𝑈)) |
15 | 14 | biimpcd 248 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝐶 → (𝜑 → 𝑎 ∈ 𝑈)) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → (𝜑 → 𝑎 ∈ 𝑈)) |
17 | 16 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝑈) |
18 | 13 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈)) |
19 | 18 | biimpcd 248 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐶 → (𝜑 → 𝑏 ∈ 𝑈)) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → (𝜑 → 𝑏 ∈ 𝑈)) |
21 | 20 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝑈) |
22 | 1, 10, 11, 17, 21 | setchom 17711 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏 ↑m 𝑎)) |
23 | 22 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ ℎ ∈ (𝑏 ↑m 𝑎))) |
24 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem6 17793 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ ℎ ∈ (𝑏 ↑m 𝑎)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ) |
25 | 24 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (ℎ ∈ (𝑏 ↑m 𝑎) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
26 | 23, 25 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
27 | 26 | com12 32 |
. . . . . . . . 9
⊢ (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑎𝐺𝑏)‘ℎ) = ℎ)) |
29 | 28 | impcom 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) ∧ (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘ℎ) = ℎ) |
30 | 22 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ 𝑘 ∈ (𝑏 ↑m 𝑎))) |
31 | 1, 2, 3, 4, 5, 6 | funcsetcestrclem6 17793 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ 𝑘 ∈ (𝑏 ↑m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘) |
32 | 31 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑘 ∈ (𝑏 ↑m 𝑎) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
33 | 30, 32 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
34 | 33 | com12 32 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
35 | 34 | adantl 481 |
. . . . . . . 8
⊢ ((ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)) |
36 | 35 | impcom 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) ∧ (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘) |
37 | 29, 36 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) ∧ (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) ↔ ℎ = 𝑘)) |
38 | 37 | biimpd 228 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) ∧ (ℎ ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘)) |
39 | 38 | ralrimivva 3114 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∀ℎ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘)) |
40 | | dff13 7109 |
. . . 4
⊢ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏)) ∧ ∀ℎ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘ℎ) = ((𝑎𝐺𝑏)‘𝑘) → ℎ = 𝑘))) |
41 | 9, 39, 40 | sylanbrc 582 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏))) |
42 | 41 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏))) |
43 | | eqid 2738 |
. . 3
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
44 | 2, 11, 43 | isfth2 17547 |
. 2
⊢ (𝐹(𝑆 Faith 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹‘𝑎)(Hom ‘𝐸)(𝐹‘𝑏)))) |
45 | 8, 42, 44 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐹(𝑆 Faith 𝐸)𝐺) |