Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvrcllb0da Structured version   Visualization version   GIF version

Theorem fvrcllb0da 38773
Description: A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvrcllb0da.rel (𝜑 → Rel 𝑅)
fvrcllb0da.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
fvrcllb0da (𝜑 → ( I ↾ 𝑅) ⊆ (r*‘𝑅))

Proof of Theorem fvrcllb0da
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 38755 . 2 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
2 fvrcllb0da.r . 2 (𝜑𝑅 ∈ V)
3 prex 5104 . . 3 {0, 1} ∈ V
43a1i 11 . 2 (𝜑 → {0, 1} ∈ V)
5 fvrcllb0da.rel . 2 (𝜑 → Rel 𝑅)
6 c0ex 10326 . . . 4 0 ∈ V
76prid1 4490 . . 3 0 ∈ {0, 1}
87a1i 11 . 2 (𝜑 → 0 ∈ {0, 1})
91, 2, 4, 5, 8fvmptiunrelexplb0da 38764 1 (𝜑 → ( I ↾ 𝑅) ⊆ (r*‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  Vcvv 3389  wss 3773  {cpr 4374   cuni 4632   I cid 5223  cres 5318  Rel wrel 5321  cfv 6105  0cc0 10228  1c1 10229  r*crcl 38751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-rep 4968  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-int 4672  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-om 7304  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-er 7986  df-en 8200  df-dom 8201  df-sdom 8202  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-sub 10562  df-neg 10563  df-nn 11317  df-n0 11585  df-z 11671  df-uz 11935  df-seq 13060  df-relexp 14106  df-rcl 38752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator