Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2 Structured version   Visualization version   GIF version

Theorem line2 48741
Description: Example for a line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2.x 𝑋 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}
line2.y 𝑌 = {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}
Assertion
Ref Expression
line2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = (𝑋𝐿𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2
StepHypRef Expression
1 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
21adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
3 line2.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
4 line2.p . . . . . . . . . . . . . 14 𝑃 = (ℝ ↑m 𝐼)
53, 4rrx2pxel 48700 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
65adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
72, 6remulcld 11204 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
87recnd 11202 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
9 simpl2l 1227 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
103, 4rrx2pyel 48701 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
1110adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
129, 11remulcld 11204 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
1312recnd 11202 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
14 simpl 482 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
1514recnd 11202 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
16153ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
1716adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐵 ∈ ℂ)
18 simp2r 1201 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ≠ 0)
1918adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐵 ≠ 0)
208, 13, 17, 19divdird 11996 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (((𝐴 · (𝑝‘1)) / 𝐵) + ((𝐵 · (𝑝‘2)) / 𝐵)))
2110recnd 11202 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
2221adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
2322, 17, 19divcan3d 11963 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) / 𝐵) = (𝑝‘2))
2423oveq2d 7403 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) / 𝐵) + ((𝐵 · (𝑝‘2)) / 𝐵)) = (((𝐴 · (𝑝‘1)) / 𝐵) + (𝑝‘2)))
2520, 24eqtrd 2764 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (((𝐴 · (𝑝‘1)) / 𝐵) + (𝑝‘2)))
2625eqeq1d 2731 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (𝐶 / 𝐵) ↔ (((𝐴 · (𝑝‘1)) / 𝐵) + (𝑝‘2)) = (𝐶 / 𝐵)))
277, 9, 19redivcld 12010 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) / 𝐵) ∈ ℝ)
2827recnd 11202 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) / 𝐵) ∈ ℂ)
29 simp3 1138 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
30143ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3129, 30, 18redivcld 12010 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
3231recnd 11202 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℂ)
3332adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐶 / 𝐵) ∈ ℂ)
3428, 22, 33addrsub 11595 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) / 𝐵) + (𝑝‘2)) = (𝐶 / 𝐵) ↔ (𝑝‘2) = ((𝐶 / 𝐵) − ((𝐴 · (𝑝‘1)) / 𝐵))))
35 simpl3 1194 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
3635, 9, 19redivcld 12010 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐶 / 𝐵) ∈ ℝ)
3736recnd 11202 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐶 / 𝐵) ∈ ℂ)
3828, 37negsubdi2d 11549 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -(((𝐴 · (𝑝‘1)) / 𝐵) − (𝐶 / 𝐵)) = ((𝐶 / 𝐵) − ((𝐴 · (𝑝‘1)) / 𝐵)))
3928, 37negsubdid 11548 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -(((𝐴 · (𝑝‘1)) / 𝐵) − (𝐶 / 𝐵)) = (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵)))
4038, 39eqtr3d 2766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐶 / 𝐵) − ((𝐴 · (𝑝‘1)) / 𝐵)) = (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵)))
4140eqeq2d 2740 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘2) = ((𝐶 / 𝐵) − ((𝐴 · (𝑝‘1)) / 𝐵)) ↔ (𝑝‘2) = (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵))))
4226, 34, 413bitrd 305 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (𝐶 / 𝐵) ↔ (𝑝‘2) = (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵))))
437, 12readdcld 11203 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) ∈ ℝ)
4443recnd 11202 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) ∈ ℂ)
4529recnd 11202 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4645adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
47 recn 11158 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4847anim1i 615 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
49483ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
5049adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
51 div11 11865 . . . . . . 7 ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (𝐶 / 𝐵) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
5244, 46, 50, 51syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) / 𝐵) = (𝐶 / 𝐵) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
538, 17, 19divnegd 11971 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -((𝐴 · (𝑝‘1)) / 𝐵) = (-(𝐴 · (𝑝‘1)) / 𝐵))
541recnd 11202 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
5554adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
565recnd 11202 . . . . . . . . . . . . . 14 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
5756adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5855, 57mulneg1d 11631 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (-𝐴 · (𝑝‘1)) = -(𝐴 · (𝑝‘1)))
5958eqcomd 2735 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -(𝐴 · (𝑝‘1)) = (-𝐴 · (𝑝‘1)))
6059oveq1d 7402 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (-(𝐴 · (𝑝‘1)) / 𝐵) = ((-𝐴 · (𝑝‘1)) / 𝐵))
6153, 60eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -((𝐴 · (𝑝‘1)) / 𝐵) = ((-𝐴 · (𝑝‘1)) / 𝐵))
62 renegcl 11485 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6362recnd 11202 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
64633ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → -𝐴 ∈ ℂ)
6564adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -𝐴 ∈ ℂ)
66 div23 11856 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ (𝑝‘1) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((-𝐴 · (𝑝‘1)) / 𝐵) = ((-𝐴 / 𝐵) · (𝑝‘1)))
6765, 57, 50, 66syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((-𝐴 · (𝑝‘1)) / 𝐵) = ((-𝐴 / 𝐵) · (𝑝‘1)))
68 line2.x . . . . . . . . . . . . . . 15 𝑋 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}
6968fveq1i 6859 . . . . . . . . . . . . . 14 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)
70 1ex 11170 . . . . . . . . . . . . . . . 16 1 ∈ V
71 c0ex 11168 . . . . . . . . . . . . . . . 16 0 ∈ V
72 1ne2 12389 . . . . . . . . . . . . . . . 16 1 ≠ 2
7370, 71, 723pm3.2i 1340 . . . . . . . . . . . . . . 15 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
74 fvpr1g 7164 . . . . . . . . . . . . . . 15 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
7573, 74mp1i 13 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
7669, 75eqtrid 2776 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑋‘1) = 0)
7776adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑋‘1) = 0)
7877oveq2d 7403 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘1) − (𝑋‘1)) = ((𝑝‘1) − 0))
7957subid1d 11522 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘1) − 0) = (𝑝‘1))
8078, 79eqtr2d 2765 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑝‘1) = ((𝑝‘1) − (𝑋‘1)))
8180oveq2d 7403 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((-𝐴 / 𝐵) · (𝑝‘1)) = ((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))))
8261, 67, 813eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → -((𝐴 · (𝑝‘1)) / 𝐵) = ((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))))
8382oveq1d 7402 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵)) = (((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)))
8483eqeq2d 2740 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘2) = (-((𝐴 · (𝑝‘1)) / 𝐵) + (𝐶 / 𝐵)) ↔ (𝑝‘2) = (((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵))))
8542, 52, 843bitr3d 309 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵))))
86 recn 11158 . . . . . . . . . . . . 13 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
8786adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
88 recn 11158 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
8988adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
90 sub32 11456 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶𝐴) − 𝐶) = ((𝐶𝐶) − 𝐴))
91 subid 11441 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℂ → (𝐶𝐶) = 0)
92913ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐶) = 0)
9392oveq1d 7402 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶𝐶) − 𝐴) = (0 − 𝐴))
94 df-neg 11408 . . . . . . . . . . . . . 14 -𝐴 = (0 − 𝐴)
9593, 94eqtr4di 2782 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶𝐶) − 𝐴) = -𝐴)
9690, 95eqtr2d 2765 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -𝐴 = ((𝐶𝐴) − 𝐶))
9787, 89, 87, 96syl3anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐴 = ((𝐶𝐴) − 𝐶))
98973adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → -𝐴 = ((𝐶𝐴) − 𝐶))
9998oveq1d 7402 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (-𝐴 / 𝐵) = (((𝐶𝐴) − 𝐶) / 𝐵))
10099adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (-𝐴 / 𝐵) = (((𝐶𝐴) − 𝐶) / 𝐵))
101100oveq1d 7402 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) = ((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))))
102101oveq1d 7402 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) = (((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)))
103102eqeq2d 2740 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘2) = (((-𝐴 / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) ↔ (𝑝‘2) = (((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵))))
10485, 103bitrd 279 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵))))
105 line2.y . . . . . . . . . . 11 𝑌 = {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}
106105fveq1i 6859 . . . . . . . . . 10 (𝑌‘2) = ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘2)
107 2ex 12263 . . . . . . . . . . . . . 14 2 ∈ V
108107a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 2 ∈ V)
109 resubcl 11486 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
110109ancoms 458 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
1111103adant2 1131 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
112111, 30, 18redivcld 12010 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ((𝐶𝐴) / 𝐵) ∈ ℝ)
11372a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 1 ≠ 2)
114108, 112, 1133jca 1128 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (2 ∈ V ∧ ((𝐶𝐴) / 𝐵) ∈ ℝ ∧ 1 ≠ 2))
115114adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (2 ∈ V ∧ ((𝐶𝐴) / 𝐵) ∈ ℝ ∧ 1 ≠ 2))
116 fvpr2g 7165 . . . . . . . . . . 11 ((2 ∈ V ∧ ((𝐶𝐴) / 𝐵) ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘2) = ((𝐶𝐴) / 𝐵))
117115, 116syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘2) = ((𝐶𝐴) / 𝐵))
118106, 117eqtrid 2776 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑌‘2) = ((𝐶𝐴) / 𝐵))
11968fveq1i 6859 . . . . . . . . . . 11 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)
120 fvpr2g 7165 . . . . . . . . . . . 12 ((2 ∈ V ∧ (𝐶 / 𝐵) ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
121107, 31, 113, 120mp3an2i 1468 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
122119, 121eqtrid 2776 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑋‘2) = (𝐶 / 𝐵))
123122adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (𝑋‘2) = (𝐶 / 𝐵))
124118, 123oveq12d 7405 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) = (((𝐶𝐴) / 𝐵) − (𝐶 / 𝐵)))
12529, 1resubcld 11606 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
126125recnd 11202 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶𝐴) ∈ ℂ)
127 divsubdir 11876 . . . . . . . . . . 11 (((𝐶𝐴) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐶𝐴) − 𝐶) / 𝐵) = (((𝐶𝐴) / 𝐵) − (𝐶 / 𝐵)))
128126, 45, 49, 127syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((𝐶𝐴) − 𝐶) / 𝐵) = (((𝐶𝐴) / 𝐵) − (𝐶 / 𝐵)))
129128eqcomd 2735 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((𝐶𝐴) / 𝐵) − (𝐶 / 𝐵)) = (((𝐶𝐴) − 𝐶) / 𝐵))
130129adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐶𝐴) / 𝐵) − (𝐶 / 𝐵)) = (((𝐶𝐴) − 𝐶) / 𝐵))
131124, 130eqtr2d 2765 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐶𝐴) − 𝐶) / 𝐵) = ((𝑌‘2) − (𝑋‘2)))
132131oveq1d 7402 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) = (((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))))
133132oveq1d 7402 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) = ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)))
134133eqeq2d 2740 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘2) = (((((𝐶𝐴) − 𝐶) / 𝐵) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) ↔ (𝑝‘2) = ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵))))
135105fveq1i 6859 . . . . . . . . . . . . . . 15 (𝑌‘1) = ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘1)
13670, 70fvpr1 7166 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘1) = 1)
13772, 136ax-mp 5 . . . . . . . . . . . . . . 15 ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘1) = 1
138135, 137eqtri 2752 . . . . . . . . . . . . . 14 (𝑌‘1) = 1
13970, 71fvpr1 7166 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
14072, 139ax-mp 5 . . . . . . . . . . . . . . 15 ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0
14169, 140eqtri 2752 . . . . . . . . . . . . . 14 (𝑋‘1) = 0
142138, 141oveq12i 7399 . . . . . . . . . . . . 13 ((𝑌‘1) − (𝑋‘1)) = (1 − 0)
143 1m0e1 12302 . . . . . . . . . . . . 13 (1 − 0) = 1
144142, 143eqtri 2752 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 1
145144a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ((𝑌‘1) − (𝑋‘1)) = 1)
146145oveq2d 7403 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) = (((𝑌‘2) − (𝑋‘2)) / 1))
147107, 112, 113, 116mp3an2i 1468 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘2) = ((𝐶𝐴) / 𝐵))
148106, 147eqtrid 2776 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑌‘2) = ((𝐶𝐴) / 𝐵))
149112recnd 11202 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ((𝐶𝐴) / 𝐵) ∈ ℂ)
150148, 149eqeltrd 2828 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑌‘2) ∈ ℂ)
151122, 32eqeltrd 2828 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑋‘2) ∈ ℂ)
152150, 151subcld 11533 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
153152div1d 11950 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((𝑌‘2) − (𝑋‘2)) / 1) = ((𝑌‘2) − (𝑋‘2)))
154146, 153eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) = ((𝑌‘2) − (𝑋‘2)))
155154oveq1d 7402 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → ((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) = (((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))))
156155, 122oveq12d 7405 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)) = ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)))
157156adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)) = ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)))
158157eqcomd 2735 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)))
159158eqeq2d 2740 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝‘2) = ((((𝑌‘2) − (𝑋‘2)) · ((𝑝‘1) − (𝑋‘1))) + (𝐶 / 𝐵)) ↔ (𝑝‘2) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
160104, 134, 1593bitrd 305 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
161160rabbidva 3412 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘2) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
162 line2.g . . 3 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
163162a1i 11 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
16470, 107pm3.2i 470 . . . . . . . 8 (1 ∈ V ∧ 2 ∈ V)
16531, 71jctil 519 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (0 ∈ V ∧ (𝐶 / 𝐵) ∈ ℝ))
166 fprg 7127 . . . . . . . 8 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ (𝐶 / 𝐵) ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}:{1, 2}⟶{0, (𝐶 / 𝐵)})
167164, 165, 113, 166mp3an2i 1468 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}:{1, 2}⟶{0, (𝐶 / 𝐵)})
168 0red 11177 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 0 ∈ ℝ)
169168, 31prssd 4786 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {0, (𝐶 / 𝐵)} ⊆ ℝ)
170167, 169fssd 6705 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}:{1, 2}⟶ℝ)
17168feq1i 6679 . . . . . 6 (𝑋:{1, 2}⟶ℝ ↔ {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}:{1, 2}⟶ℝ)
172170, 171sylibr 234 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑋:{1, 2}⟶ℝ)
173 reex 11159 . . . . . 6 ℝ ∈ V
174 prex 5392 . . . . . 6 {1, 2} ∈ V
175173, 174elmap 8844 . . . . 5 (𝑋 ∈ (ℝ ↑m {1, 2}) ↔ 𝑋:{1, 2}⟶ℝ)
176172, 175sylibr 234 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑋 ∈ (ℝ ↑m {1, 2}))
1773oveq2i 7398 . . . . 5 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
1784, 177eqtri 2752 . . . 4 𝑃 = (ℝ ↑m {1, 2})
179176, 178eleqtrrdi 2839 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑋𝑃)
180112, 70jctil 519 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (1 ∈ V ∧ ((𝐶𝐴) / 𝐵) ∈ ℝ))
181 fprg 7127 . . . . . . . 8 (((1 ∈ V ∧ 2 ∈ V) ∧ (1 ∈ V ∧ ((𝐶𝐴) / 𝐵) ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}:{1, 2}⟶{1, ((𝐶𝐴) / 𝐵)})
182164, 180, 113, 181mp3an2i 1468 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}:{1, 2}⟶{1, ((𝐶𝐴) / 𝐵)})
183 1red 11175 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 1 ∈ ℝ)
184183, 112prssd 4786 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {1, ((𝐶𝐴) / 𝐵)} ⊆ ℝ)
185182, 184fssd 6705 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}:{1, 2}⟶ℝ)
186105feq1i 6679 . . . . . 6 (𝑌:{1, 2}⟶ℝ ↔ {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}:{1, 2}⟶ℝ)
187185, 186sylibr 234 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑌:{1, 2}⟶ℝ)
188173, 174elmap 8844 . . . . 5 (𝑌 ∈ (ℝ ↑m {1, 2}) ↔ 𝑌:{1, 2}⟶ℝ)
189187, 188sylibr 234 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑌 ∈ (ℝ ↑m {1, 2}))
190189, 178eleqtrrdi 2839 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝑌𝑃)
191 0ne1 12257 . . . . 5 0 ≠ 1
19273, 74ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0
19369, 192eqtri 2752 . . . . . 6 (𝑋‘1) = 0
19470, 70, 723pm3.2i 1340 . . . . . . . 8 (1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2)
195 fvpr1g 7164 . . . . . . . 8 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘1) = 1)
196194, 195ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}‘1) = 1
197135, 196eqtri 2752 . . . . . 6 (𝑌‘1) = 1
198193, 197neeq12i 2991 . . . . 5 ((𝑋‘1) ≠ (𝑌‘1) ↔ 0 ≠ 1)
199191, 198mpbir 231 . . . 4 (𝑋‘1) ≠ (𝑌‘1)
200199a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑋‘1) ≠ (𝑌‘1))
201 line2.e . . . 4 𝐸 = (ℝ^‘𝐼)
202 line2.l . . . 4 𝐿 = (LineM𝐸)
203 eqid 2729 . . . 4 (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
2043, 201, 4, 202, 203rrx2linesl 48732 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
205179, 190, 200, 204syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = (((((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
206161, 163, 2053eqtr4d 2774 1 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  {cpr 4591  cop 4595  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  ℝ^crrx 25283  LineMcline 48716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-refld 21514  df-dsmm 21641  df-frlm 21656  df-tng 24472  df-tcph 25069  df-rrx 25285  df-line 48718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator