| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1o | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fvpr1o | ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8604 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 8452 | . . 3 ⊢ 1o ≠ ∅ | |
| 3 | 2 | necomi 2979 | . 2 ⊢ ∅ ≠ 1o |
| 4 | fvpr2g 7165 | . 2 ⊢ ((1o ∈ ω ∧ 𝐵 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | |
| 5 | 1, 3, 4 | mp3an13 1454 | 1 ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {cpr 4591 〈cop 4595 ‘cfv 6511 ωcom 7842 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-om 7843 df-1o 8434 |
| This theorem is referenced by: fvprif 17524 xpsfeq 17526 xpsfrnel2 17527 xpsff1o 17530 xpsle 17542 dmdprdpr 19981 dprdpr 19982 xpstopnlem1 23696 xpstopnlem2 23698 xpsxmetlem 24267 xpsdsval 24269 xpsmet 24270 |
| Copyright terms: Public domain | W3C validator |