MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1o Structured version   Visualization version   GIF version

Theorem fvpr1o 17622
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fvpr1o (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)

Proof of Theorem fvpr1o
StepHypRef Expression
1 1onn 8698 . 2 1o ∈ ω
2 1n0 8546 . . 3 1o ≠ ∅
32necomi 3001 . 2 ∅ ≠ 1o
4 fvpr2g 7227 . 2 ((1o ∈ ω ∧ 𝐵𝑉 ∧ ∅ ≠ 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
51, 3, 4mp3an13 1452 1 (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  c0 4352  {cpr 4650  cop 4654  cfv 6575  ωcom 7905  1oc1o 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fv 6583  df-om 7906  df-1o 8524
This theorem is referenced by:  fvprif  17623  xpsfeq  17625  xpsfrnel2  17626  xpsff1o  17629  xpsle  17641  dmdprdpr  20095  dprdpr  20096  xpstopnlem1  23840  xpstopnlem2  23842  xpsxmetlem  24412  xpsdsval  24414  xpsmet  24415
  Copyright terms: Public domain W3C validator