![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr1o | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fvpr1o | ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8661 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 8509 | . . 3 ⊢ 1o ≠ ∅ | |
3 | 2 | necomi 2984 | . 2 ⊢ ∅ ≠ 1o |
4 | fvpr2g 7200 | . 2 ⊢ ((1o ∈ ω ∧ 𝐵 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | |
5 | 1, 3, 4 | mp3an13 1448 | 1 ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∅c0 4322 {cpr 4632 〈cop 4636 ‘cfv 6549 ωcom 7871 1oc1o 8480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fv 6557 df-om 7872 df-1o 8487 |
This theorem is referenced by: fvprif 17546 xpsfeq 17548 xpsfrnel2 17549 xpsff1o 17552 xpsle 17564 dmdprdpr 20018 dprdpr 20019 xpstopnlem1 23757 xpstopnlem2 23759 xpsxmetlem 24329 xpsdsval 24331 xpsmet 24332 |
Copyright terms: Public domain | W3C validator |