| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1o | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fvpr1o | ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8660 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 8508 | . . 3 ⊢ 1o ≠ ∅ | |
| 3 | 2 | necomi 2985 | . 2 ⊢ ∅ ≠ 1o |
| 4 | fvpr2g 7193 | . 2 ⊢ ((1o ∈ ω ∧ 𝐵 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | |
| 5 | 1, 3, 4 | mp3an13 1453 | 1 ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 {cpr 4608 〈cop 4612 ‘cfv 6541 ωcom 7869 1oc1o 8481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fv 6549 df-om 7870 df-1o 8488 |
| This theorem is referenced by: fvprif 17577 xpsfeq 17579 xpsfrnel2 17580 xpsff1o 17583 xpsle 17595 dmdprdpr 20037 dprdpr 20038 xpstopnlem1 23763 xpstopnlem2 23765 xpsxmetlem 24334 xpsdsval 24336 xpsmet 24337 |
| Copyright terms: Public domain | W3C validator |