| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1o | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fvpr1o | ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8606 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 8454 | . . 3 ⊢ 1o ≠ ∅ | |
| 3 | 2 | necomi 2980 | . 2 ⊢ ∅ ≠ 1o |
| 4 | fvpr2g 7167 | . 2 ⊢ ((1o ∈ ω ∧ 𝐵 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | |
| 5 | 1, 3, 4 | mp3an13 1454 | 1 ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 {cpr 4593 〈cop 4597 ‘cfv 6513 ωcom 7844 1oc1o 8429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fv 6521 df-om 7845 df-1o 8436 |
| This theorem is referenced by: fvprif 17530 xpsfeq 17532 xpsfrnel2 17533 xpsff1o 17536 xpsle 17548 dmdprdpr 19987 dprdpr 19988 xpstopnlem1 23702 xpstopnlem2 23704 xpsxmetlem 24273 xpsdsval 24275 xpsmet 24276 |
| Copyright terms: Public domain | W3C validator |