MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1o Structured version   Visualization version   GIF version

Theorem fvpr1o 17529
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fvpr1o (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)

Proof of Theorem fvpr1o
StepHypRef Expression
1 1onn 8606 . 2 1o ∈ ω
2 1n0 8454 . . 3 1o ≠ ∅
32necomi 2980 . 2 ∅ ≠ 1o
4 fvpr2g 7167 . 2 ((1o ∈ ω ∧ 𝐵𝑉 ∧ ∅ ≠ 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
51, 3, 4mp3an13 1454 1 (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  c0 4298  {cpr 4593  cop 4597  cfv 6513  ωcom 7844  1oc1o 8429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fv 6521  df-om 7845  df-1o 8436
This theorem is referenced by:  fvprif  17530  xpsfeq  17532  xpsfrnel2  17533  xpsff1o  17536  xpsle  17548  dmdprdpr  19987  dprdpr  19988  xpstopnlem1  23702  xpstopnlem2  23704  xpsxmetlem  24273  xpsdsval  24275  xpsmet  24276
  Copyright terms: Public domain W3C validator