![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr1o | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fvpr1o | ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8686 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 8534 | . . 3 ⊢ 1o ≠ ∅ | |
3 | 2 | necomi 2995 | . 2 ⊢ ∅ ≠ 1o |
4 | fvpr2g 7218 | . 2 ⊢ ((1o ∈ ω ∧ 𝐵 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | |
5 | 1, 3, 4 | mp3an13 1453 | 1 ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 {cpr 4636 〈cop 4640 ‘cfv 6569 ωcom 7894 1oc1o 8507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fv 6577 df-om 7895 df-1o 8514 |
This theorem is referenced by: fvprif 17617 xpsfeq 17619 xpsfrnel2 17620 xpsff1o 17623 xpsle 17635 dmdprdpr 20093 dprdpr 20094 xpstopnlem1 23842 xpstopnlem2 23844 xpsxmetlem 24414 xpsdsval 24416 xpsmet 24417 |
Copyright terms: Public domain | W3C validator |