MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1o Structured version   Visualization version   GIF version

Theorem fvpr1o 17459
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fvpr1o (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)

Proof of Theorem fvpr1o
StepHypRef Expression
1 1onn 8550 . 2 1o ∈ ω
2 1n0 8398 . . 3 1o ≠ ∅
32necomi 2982 . 2 ∅ ≠ 1o
4 fvpr2g 7120 . 2 ((1o ∈ ω ∧ 𝐵𝑉 ∧ ∅ ≠ 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
51, 3, 4mp3an13 1454 1 (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  c0 4278  {cpr 4573  cop 4577  cfv 6476  ωcom 7791  1oc1o 8373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fv 6484  df-om 7792  df-1o 8380
This theorem is referenced by:  fvprif  17460  xpsfeq  17462  xpsfrnel2  17463  xpsff1o  17466  xpsle  17478  dmdprdpr  19958  dprdpr  19959  xpstopnlem1  23719  xpstopnlem2  23721  xpsxmetlem  24289  xpsdsval  24291  xpsmet  24292
  Copyright terms: Public domain W3C validator