![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsscn | Structured version Visualization version GIF version |
Description: A finite sequence of integers is a set of complex numbers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fzsscn | ⊢ (𝑀...𝑁) ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssz 12596 | . 2 ⊢ (𝑀...𝑁) ⊆ ℤ | |
2 | zsscn 11673 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | sstri 3808 | 1 ⊢ (𝑀...𝑁) ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3770 (class class class)co 6879 ℂcc 10223 ℤcz 11665 ...cfz 12579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-neg 10560 df-z 11666 df-uz 11930 df-fz 12580 |
This theorem is referenced by: etransclem24 41213 etransclem35 41224 |
Copyright terms: Public domain | W3C validator |