Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > divcan8d | Structured version Visualization version GIF version |
Description: A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
divcan8d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcan8d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcan8d.a0 | ⊢ (𝜑 → 𝐴 ≠ 0) |
divcan8d.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divcan8d | ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcan8d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | divcan8d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | 2, 1 | mulcld 11045 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
4 | divcan8d.a0 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
5 | divcan8d.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
6 | 2, 1, 4, 5 | mulne0d 11677 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) |
7 | 2, 1, 6 | mulne0bbd 11681 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
8 | 1, 3, 1, 6, 7 | divcan7d 11829 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (𝐵 / (𝐴 · 𝐵))) |
9 | 8 | eqcomd 2742 | . 2 ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵))) |
10 | 1, 5 | dividd 11799 | . . 3 ⊢ (𝜑 → (𝐵 / 𝐵) = 1) |
11 | 2, 1, 5 | divcan4d 11807 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
12 | 10, 11 | oveq12d 7325 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (1 / 𝐴)) |
13 | eqidd 2737 | . 2 ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐴)) | |
14 | 9, 12, 13 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2940 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 · cmul 10926 / cdiv 11682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 |
This theorem is referenced by: dvnxpaek 43712 |
Copyright terms: Public domain | W3C validator |