Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12352 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3927 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3889 ℂcc 10897 ℤcz 12347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-resscn 10956 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ov 7298 df-neg 11236 df-z 12348 |
This theorem is referenced by: zex 12356 elq 12718 zexpcl 13825 fsumzcl 15475 fprodzcl 15692 zrisefaccl 15758 zfallfaccl 15759 4sqlem11 16684 cygabl 19519 zringbas 20704 zring0 20708 lmbrf 22439 lmres 22479 sszcld 24008 lmmbrf 24454 iscauf 24472 caucfil 24475 lmclimf 24496 elqaalem3 25509 iaa 25513 aareccl 25514 wilthlem2 26246 wilthlem3 26247 lgsfcl2 26479 2sqlem6 26599 znfermltl 31590 zringnm 31936 fsum2dsub 32615 reprsuc 32623 caures 35946 mzpexpmpt 40590 uzmptshftfval 41988 fzsscn 42884 dvnprodlem1 43522 dvnprodlem2 43523 elaa2lem 43809 oddibas 45407 2zrngbas 45534 2zrng0 45536 |
Copyright terms: Public domain | W3C validator |