![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12616 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3999 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ℂcc 11151 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 |
This theorem is referenced by: zex 12620 elq 12990 zexpcl 14114 fsumzcl 15768 fprodzcl 15987 zrisefaccl 16053 zfallfaccl 16054 4sqlem11 16989 cygabl 19924 zringbas 21482 zring0 21487 fermltlchr 21562 lmbrf 23284 lmres 23324 sszcld 24853 lmmbrf 25310 iscauf 25328 caucfil 25331 lmclimf 25352 elqaalem3 26378 iaa 26382 aareccl 26383 wilthlem2 27127 wilthlem3 27128 lgsfcl2 27362 2sqlem6 27482 gsumzrsum 33045 znfermltl 33374 zringnm 33919 fsum2dsub 34601 reprsuc 34609 caures 37747 mzpexpmpt 42733 uzmptshftfval 44342 fzsscn 45262 dvnprodlem2 45903 elaa2lem 46189 oddibas 48017 2zrngbas 48086 2zrng0 48088 |
Copyright terms: Public domain | W3C validator |