| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12470 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3938 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 ℂcc 11001 ℤcz 12465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11344 df-z 12466 |
| This theorem is referenced by: zex 12474 elq 12845 zexpcl 13980 fsumzcl 15639 fprodzcl 15858 zrisefaccl 15924 zfallfaccl 15925 4sqlem11 16864 cygabl 19801 zringbas 21388 zring0 21393 fermltlchr 21464 lmbrf 23173 lmres 23213 sszcld 24731 lmmbrf 25187 iscauf 25205 caucfil 25208 lmclimf 25229 elqaalem3 26254 iaa 26258 aareccl 26259 wilthlem2 27004 wilthlem3 27005 lgsfcl2 27239 2sqlem6 27359 gsumzrsum 33034 znfermltl 33326 zringnm 33966 fsum2dsub 34615 reprsuc 34623 caures 37799 mzpexpmpt 42777 uzmptshftfval 44378 fzsscn 45351 dvnprodlem2 45984 elaa2lem 46270 oddibas 48203 2zrngbas 48272 2zrng0 48274 |
| Copyright terms: Public domain | W3C validator |