![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12644 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 4012 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ℂcc 11182 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: zex 12648 elq 13015 zexpcl 14127 fsumzcl 15783 fprodzcl 16002 zrisefaccl 16068 zfallfaccl 16069 4sqlem11 17002 cygabl 19933 zringbas 21487 zring0 21492 fermltlchr 21567 lmbrf 23289 lmres 23329 sszcld 24858 lmmbrf 25315 iscauf 25333 caucfil 25336 lmclimf 25357 elqaalem3 26381 iaa 26385 aareccl 26386 wilthlem2 27130 wilthlem3 27131 lgsfcl2 27365 2sqlem6 27485 znfermltl 33359 zringnm 33904 fsum2dsub 34584 reprsuc 34592 caures 37720 mzpexpmpt 42701 uzmptshftfval 44315 fzsscn 45226 dvnprodlem1 45867 dvnprodlem2 45868 elaa2lem 46154 oddibas 47896 2zrngbas 47965 2zrng0 47967 |
Copyright terms: Public domain | W3C validator |