| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12480 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ℂcc 11011 ℤcz 12475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-neg 11354 df-z 12476 |
| This theorem is referenced by: zex 12484 elq 12850 zexpcl 13985 fsumzcl 15644 fprodzcl 15863 zrisefaccl 15929 zfallfaccl 15930 4sqlem11 16869 cygabl 19805 zringbas 21392 zring0 21397 fermltlchr 21468 lmbrf 23176 lmres 23216 sszcld 24734 lmmbrf 25190 iscauf 25208 caucfil 25211 lmclimf 25232 elqaalem3 26257 iaa 26261 aareccl 26262 wilthlem2 27007 wilthlem3 27008 lgsfcl2 27242 2sqlem6 27362 gsumzrsum 33046 znfermltl 33338 zringnm 33992 fsum2dsub 34641 reprsuc 34649 caures 37820 mzpexpmpt 42862 uzmptshftfval 44463 fzsscn 45436 dvnprodlem2 46069 elaa2lem 46355 nthrucw 47008 oddibas 48297 2zrngbas 48366 2zrng0 48368 |
| Copyright terms: Public domain | W3C validator |