| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12494 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3941 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 ℂcc 11026 ℤcz 12489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-neg 11368 df-z 12490 |
| This theorem is referenced by: zex 12498 elq 12869 zexpcl 14001 fsumzcl 15660 fprodzcl 15879 zrisefaccl 15945 zfallfaccl 15946 4sqlem11 16885 cygabl 19788 zringbas 21378 zring0 21383 fermltlchr 21454 lmbrf 23163 lmres 23203 sszcld 24722 lmmbrf 25178 iscauf 25196 caucfil 25199 lmclimf 25220 elqaalem3 26245 iaa 26249 aareccl 26250 wilthlem2 26995 wilthlem3 26996 lgsfcl2 27230 2sqlem6 27350 gsumzrsum 33025 znfermltl 33313 zringnm 33924 fsum2dsub 34574 reprsuc 34582 caures 37739 mzpexpmpt 42718 uzmptshftfval 44319 fzsscn 45293 dvnprodlem2 45929 elaa2lem 46215 oddibas 48158 2zrngbas 48227 2zrng0 48229 |
| Copyright terms: Public domain | W3C validator |