Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12254 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3921 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ℂcc 10800 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 |
This theorem is referenced by: zex 12258 elq 12619 zexpcl 13725 fsumzcl 15375 fprodzcl 15592 zrisefaccl 15658 zfallfaccl 15659 4sqlem11 16584 cygabl 19406 zringbas 20588 zring0 20592 lmbrf 22319 lmres 22359 sszcld 23886 lmmbrf 24331 iscauf 24349 caucfil 24352 lmclimf 24373 elqaalem3 25386 iaa 25390 aareccl 25391 wilthlem2 26123 wilthlem3 26124 lgsfcl2 26356 2sqlem6 26476 znfermltl 31464 zringnm 31810 fsum2dsub 32487 reprsuc 32495 caures 35845 mzpexpmpt 40483 uzmptshftfval 41853 fzsscn 42740 dvnprodlem1 43377 dvnprodlem2 43378 elaa2lem 43664 oddibas 45255 2zrngbas 45382 2zrng0 45384 |
Copyright terms: Public domain | W3C validator |