![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11671 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3802 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3769 ℂcc 10222 ℤcz 11666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-resscn 10281 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 df-neg 10559 df-z 11667 |
This theorem is referenced by: zex 11675 elq 12035 zexpcl 13129 fsumzcl 14807 fprodzcl 15021 zrisefaccl 15087 zfallfaccl 15088 4sqlem11 15992 zringbas 20146 zring0 20150 lmbrf 21393 lmres 21433 sszcld 22948 lmmbrf 23388 iscauf 23406 caucfil 23409 lmclimf 23430 elqaalem3 24417 iaa 24421 aareccl 24422 wilthlem2 25147 wilthlem3 25148 lgsfcl2 25380 2sqlem6 25500 zringnm 30520 fsum2dsub 31205 reprsuc 31213 caures 34043 mzpexpmpt 38094 uzmptshftfval 39327 fzsscn 40270 dvnprodlem1 40905 dvnprodlem2 40906 elaa2lem 41193 oddibas 42612 2zrngbas 42735 2zrng0 42737 |
Copyright terms: Public domain | W3C validator |