| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12541 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ℂcc 11073 ℤcz 12536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 |
| This theorem is referenced by: zex 12545 elq 12916 zexpcl 14048 fsumzcl 15708 fprodzcl 15927 zrisefaccl 15993 zfallfaccl 15994 4sqlem11 16933 cygabl 19828 zringbas 21370 zring0 21375 fermltlchr 21446 lmbrf 23154 lmres 23194 sszcld 24713 lmmbrf 25169 iscauf 25187 caucfil 25190 lmclimf 25211 elqaalem3 26236 iaa 26240 aareccl 26241 wilthlem2 26986 wilthlem3 26987 lgsfcl2 27221 2sqlem6 27341 gsumzrsum 33006 znfermltl 33344 zringnm 33955 fsum2dsub 34605 reprsuc 34613 caures 37761 mzpexpmpt 42740 uzmptshftfval 44342 fzsscn 45316 dvnprodlem2 45952 elaa2lem 46238 oddibas 48165 2zrngbas 48234 2zrng0 48236 |
| Copyright terms: Public domain | W3C validator |