| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12534 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ℂcc 11066 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 |
| This theorem is referenced by: zex 12538 elq 12909 zexpcl 14041 fsumzcl 15701 fprodzcl 15920 zrisefaccl 15986 zfallfaccl 15987 4sqlem11 16926 cygabl 19821 zringbas 21363 zring0 21368 fermltlchr 21439 lmbrf 23147 lmres 23187 sszcld 24706 lmmbrf 25162 iscauf 25180 caucfil 25183 lmclimf 25204 elqaalem3 26229 iaa 26233 aareccl 26234 wilthlem2 26979 wilthlem3 26980 lgsfcl2 27214 2sqlem6 27334 gsumzrsum 32999 znfermltl 33337 zringnm 33948 fsum2dsub 34598 reprsuc 34606 caures 37754 mzpexpmpt 42733 uzmptshftfval 44335 fzsscn 45309 dvnprodlem2 45945 elaa2lem 46231 oddibas 48161 2zrngbas 48230 2zrng0 48232 |
| Copyright terms: Public domain | W3C validator |