| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12593 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3962 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 ℂcc 11127 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 df-z 12589 |
| This theorem is referenced by: zex 12597 elq 12966 zexpcl 14094 fsumzcl 15751 fprodzcl 15970 zrisefaccl 16036 zfallfaccl 16037 4sqlem11 16975 cygabl 19872 zringbas 21414 zring0 21419 fermltlchr 21490 lmbrf 23198 lmres 23238 sszcld 24757 lmmbrf 25214 iscauf 25232 caucfil 25235 lmclimf 25256 elqaalem3 26281 iaa 26285 aareccl 26286 wilthlem2 27031 wilthlem3 27032 lgsfcl2 27266 2sqlem6 27386 gsumzrsum 33053 znfermltl 33381 zringnm 33989 fsum2dsub 34639 reprsuc 34647 caures 37784 mzpexpmpt 42768 uzmptshftfval 44370 fzsscn 45340 dvnprodlem2 45976 elaa2lem 46262 oddibas 48148 2zrngbas 48217 2zrng0 48219 |
| Copyright terms: Public domain | W3C validator |