| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version | ||
| Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13541 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3962 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 (class class class)co 7405 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: fzof 13673 fzossz 13696 seqcoll 14482 lcmflefac 16667 prmodvdslcmf 17067 prmolelcmf 17068 prmgaplcmlem1 17071 prmgaplcmlem2 17072 prmgaplcm 17080 freshmansdream 21535 wilthlem2 27031 wilthlem3 27032 cycpmfv2 33125 breprexplema 34662 breprexplemc 34664 breprexpnat 34666 vtsprod 34671 lcmfunnnd 42025 lcmineqlem4 42045 aks6d1c6lem5 42190 fzisoeu 45329 fzsscn 45340 fzssre 45343 fzct 45406 dvnprodlem2 45976 fourierdlem20 46156 fourierdlem25 46161 fourierdlem37 46173 fourierdlem52 46187 fourierdlem64 46199 fourierdlem79 46214 |
| Copyright terms: Public domain | W3C validator |