| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version | ||
| Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13492 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 (class class class)co 7390 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fzof 13624 fzossz 13647 seqcoll 14436 lcmflefac 16625 prmodvdslcmf 17025 prmolelcmf 17026 prmgaplcmlem1 17029 prmgaplcmlem2 17030 prmgaplcm 17038 freshmansdream 21491 wilthlem2 26986 wilthlem3 26987 cycpmfv2 33078 breprexplema 34628 breprexplemc 34630 breprexpnat 34632 vtsprod 34637 lcmfunnnd 42007 lcmineqlem4 42027 aks6d1c6lem5 42172 fzisoeu 45305 fzsscn 45316 fzssre 45319 fzct 45382 dvnprodlem2 45952 fourierdlem20 46132 fourierdlem25 46137 fourierdlem37 46149 fourierdlem52 46163 fourierdlem64 46175 fourierdlem79 46190 |
| Copyright terms: Public domain | W3C validator |