Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version |
Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13185 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | 1 | ssriv 3921 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 (class class class)co 7255 ℤcz 12249 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fzof 13313 fzossz 13335 seqcoll 14106 lcmflefac 16281 prmodvdslcmf 16676 prmolelcmf 16677 prmgaplcmlem1 16680 prmgaplcmlem2 16681 prmgaplcm 16689 wilthlem2 26123 wilthlem3 26124 cycpmfv2 31283 freshmansdream 31386 breprexplema 32510 breprexplemc 32512 breprexpnat 32514 vtsprod 32519 lcmfunnnd 39948 lcmineqlem4 39968 fzisoeu 42729 fzsscn 42740 fzssre 42743 fzct 42808 dvnprodlem1 43377 dvnprodlem2 43378 fourierdlem20 43558 fourierdlem25 43563 fourierdlem37 43575 fourierdlem52 43589 fourierdlem64 43601 fourierdlem79 43616 |
Copyright terms: Public domain | W3C validator |