Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version |
Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13256 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | 1 | ssriv 3925 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 (class class class)co 7275 ℤcz 12319 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-neg 11208 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: fzof 13384 fzossz 13407 seqcoll 14178 lcmflefac 16353 prmodvdslcmf 16748 prmolelcmf 16749 prmgaplcmlem1 16752 prmgaplcmlem2 16753 prmgaplcm 16761 wilthlem2 26218 wilthlem3 26219 cycpmfv2 31381 freshmansdream 31484 breprexplema 32610 breprexplemc 32612 breprexpnat 32614 vtsprod 32619 lcmfunnnd 40020 lcmineqlem4 40040 fzisoeu 42839 fzsscn 42850 fzssre 42853 fzct 42918 dvnprodlem1 43487 dvnprodlem2 43488 fourierdlem20 43668 fourierdlem25 43673 fourierdlem37 43685 fourierdlem52 43699 fourierdlem64 43711 fourierdlem79 43726 |
Copyright terms: Public domain | W3C validator |