| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version | ||
| Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13421 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3938 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 (class class class)co 7346 ℤcz 12465 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11344 df-z 12466 df-uz 12730 df-fz 13405 |
| This theorem is referenced by: fzof 13553 fzossz 13576 seqcoll 14368 lcmflefac 16556 prmodvdslcmf 16956 prmolelcmf 16957 prmgaplcmlem1 16960 prmgaplcmlem2 16961 prmgaplcm 16969 freshmansdream 21509 wilthlem2 27004 wilthlem3 27005 cycpmfv2 33078 breprexplema 34638 breprexplemc 34640 breprexpnat 34642 vtsprod 34647 lcmfunnnd 42044 lcmineqlem4 42064 aks6d1c6lem5 42209 fzisoeu 45340 fzsscn 45351 fzssre 45354 fzct 45416 dvnprodlem2 45984 fourierdlem20 46164 fourierdlem25 46169 fourierdlem37 46181 fourierdlem52 46195 fourierdlem64 46207 fourierdlem79 46222 |
| Copyright terms: Public domain | W3C validator |