![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version |
Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13584 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | 1 | ssriv 4012 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 (class class class)co 7448 ℤcz 12639 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzof 13713 fzossz 13736 seqcoll 14513 lcmflefac 16695 prmodvdslcmf 17094 prmolelcmf 17095 prmgaplcmlem1 17098 prmgaplcmlem2 17099 prmgaplcm 17107 freshmansdream 21616 wilthlem2 27130 wilthlem3 27131 cycpmfv2 33107 breprexplema 34607 breprexplemc 34609 breprexpnat 34611 vtsprod 34616 lcmfunnnd 41969 lcmineqlem4 41989 aks6d1c6lem5 42134 fzisoeu 45215 fzsscn 45226 fzssre 45229 fzct 45294 dvnprodlem1 45867 dvnprodlem2 45868 fourierdlem20 46048 fourierdlem25 46053 fourierdlem37 46065 fourierdlem52 46079 fourierdlem64 46091 fourierdlem79 46106 |
Copyright terms: Public domain | W3C validator |