| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version | ||
| Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13426 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 (class class class)co 7352 ℤcz 12475 ...cfz 13409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-neg 11354 df-z 12476 df-uz 12739 df-fz 13410 |
| This theorem is referenced by: fzof 13558 fzossz 13581 seqcoll 14373 lcmflefac 16561 prmodvdslcmf 16961 prmolelcmf 16962 prmgaplcmlem1 16965 prmgaplcmlem2 16966 prmgaplcm 16974 freshmansdream 21513 wilthlem2 27007 wilthlem3 27008 cycpmfv2 33090 breprexplema 34664 breprexplemc 34666 breprexpnat 34668 vtsprod 34673 lcmfunnnd 42125 lcmineqlem4 42145 aks6d1c6lem5 42290 fzisoeu 45425 fzsscn 45436 fzssre 45439 fzct 45501 dvnprodlem2 46069 fourierdlem20 46249 fourierdlem25 46254 fourierdlem37 46266 fourierdlem52 46280 fourierdlem64 46292 fourierdlem79 46307 |
| Copyright terms: Public domain | W3C validator |