| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssz | Structured version Visualization version GIF version | ||
| Description: A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fzssz | ⊢ (𝑀...𝑁) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13485 | . 2 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ (𝑀...𝑁) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 (class class class)co 7387 ℤcz 12529 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fzof 13617 fzossz 13640 seqcoll 14429 lcmflefac 16618 prmodvdslcmf 17018 prmolelcmf 17019 prmgaplcmlem1 17022 prmgaplcmlem2 17023 prmgaplcm 17031 freshmansdream 21484 wilthlem2 26979 wilthlem3 26980 cycpmfv2 33071 breprexplema 34621 breprexplemc 34623 breprexpnat 34625 vtsprod 34630 lcmfunnnd 42000 lcmineqlem4 42020 aks6d1c6lem5 42165 fzisoeu 45298 fzsscn 45309 fzssre 45312 fzct 45375 dvnprodlem2 45945 fourierdlem20 46125 fourierdlem25 46130 fourierdlem37 46142 fourierdlem52 46156 fourierdlem64 46168 fourierdlem79 46183 |
| Copyright terms: Public domain | W3C validator |