MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnz Structured version   Visualization version   GIF version

Theorem grpinvnz 18997
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnz ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 6886 . . . . . 6 ((𝑁𝑋) = 0 → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
21adantl 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
3 grpinvnzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 grpinvnzcl.n . . . . . . 7 𝑁 = (invg𝐺)
53, 4grpinvinv 18992 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
65adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = 𝑋)
7 grpinvnzcl.z . . . . . . 7 0 = (0g𝐺)
87, 4grpinvid 18986 . . . . . 6 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
98ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁0 ) = 0 )
102, 6, 93eqtr3d 2777 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → 𝑋 = 0 )
1110ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) = 0𝑋 = 0 ))
1211necon3d 2952 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋0 → (𝑁𝑋) ≠ 0 ))
13123impia 1117 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  cfv 6541  Basecbs 17229  0gc0g 17455  Grpcgrp 18920  invgcminusg 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-riota 7370  df-ov 7416  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924
This theorem is referenced by:  grpinvnzcl  18998
  Copyright terms: Public domain W3C validator