![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvnz | Structured version Visualization version GIF version |
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvnz | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6499 | . . . . . 6 ⊢ ((𝑁‘𝑋) = 0 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘ 0 )) | |
2 | 1 | adantl 474 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘ 0 )) |
3 | grpinvnzcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grpinvnzcl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 3, 4 | grpinvinv 17953 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
6 | 5 | adantr 473 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
7 | grpinvnzcl.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
8 | 7, 4 | grpinvid 17947 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
9 | 8 | ad2antrr 713 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘ 0 ) = 0 ) |
10 | 2, 6, 9 | 3eqtr3d 2822 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → 𝑋 = 0 ) |
11 | 10 | ex 405 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) = 0 → 𝑋 = 0 )) |
12 | 11 | necon3d 2988 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 ≠ 0 → (𝑁‘𝑋) ≠ 0 )) |
13 | 12 | 3impia 1097 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ‘cfv 6188 Basecbs 16339 0gc0g 16569 Grpcgrp 17891 invgcminusg 17892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 df-riota 6937 df-ov 6979 df-0g 16571 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-grp 17894 df-minusg 17895 |
This theorem is referenced by: grpinvnzcl 17958 |
Copyright terms: Public domain | W3C validator |