MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnz Structured version   Visualization version   GIF version

Theorem grpinvnz 18948
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnz ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 6860 . . . . . 6 ((𝑁𝑋) = 0 → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
21adantl 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
3 grpinvnzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 grpinvnzcl.n . . . . . . 7 𝑁 = (invg𝐺)
53, 4grpinvinv 18943 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
65adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = 𝑋)
7 grpinvnzcl.z . . . . . . 7 0 = (0g𝐺)
87, 4grpinvid 18937 . . . . . 6 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
98ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁0 ) = 0 )
102, 6, 93eqtr3d 2773 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → 𝑋 = 0 )
1110ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) = 0𝑋 = 0 ))
1211necon3d 2947 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋0 → (𝑁𝑋) ≠ 0 ))
13123impia 1117 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6513  Basecbs 17185  0gc0g 17408  Grpcgrp 18871  invgcminusg 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-riota 7346  df-ov 7392  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875
This theorem is referenced by:  grpinvnzcl  18949
  Copyright terms: Public domain W3C validator