| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvnz | Structured version Visualization version GIF version | ||
| Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
| grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvnz | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ ((𝑁‘𝑋) = 0 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘ 0 )) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘ 0 )) |
| 3 | grpinvnzcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grpinvnzcl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 3, 4 | grpinvinv 18918 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 7 | grpinvnzcl.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 8 | 7, 4 | grpinvid 18912 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → (𝑁‘ 0 ) = 0 ) |
| 10 | 2, 6, 9 | 3eqtr3d 2774 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑁‘𝑋) = 0 ) → 𝑋 = 0 ) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) = 0 → 𝑋 = 0 )) |
| 12 | 11 | necon3d 2949 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 ≠ 0 → (𝑁‘𝑋) ≠ 0 )) |
| 13 | 12 | 3impia 1117 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 |
| This theorem is referenced by: grpinvnzcl 18924 |
| Copyright terms: Public domain | W3C validator |