MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnz Structured version   Visualization version   GIF version

Theorem grpinvnz 18923
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnz ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 6822 . . . . . 6 ((𝑁𝑋) = 0 → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
21adantl 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
3 grpinvnzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 grpinvnzcl.n . . . . . . 7 𝑁 = (invg𝐺)
53, 4grpinvinv 18918 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
65adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = 𝑋)
7 grpinvnzcl.z . . . . . . 7 0 = (0g𝐺)
87, 4grpinvid 18912 . . . . . 6 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
98ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁0 ) = 0 )
102, 6, 93eqtr3d 2774 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → 𝑋 = 0 )
1110ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) = 0𝑋 = 0 ))
1211necon3d 2949 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋0 → (𝑁𝑋) ≠ 0 ))
13123impia 1117 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  Basecbs 17120  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  grpinvnzcl  18924
  Copyright terms: Public domain W3C validator