MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnzcl Structured version   Visualization version   GIF version

Theorem grpinvnzcl 18895
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnzcl ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem grpinvnzcl
StepHypRef Expression
1 eldifi 4127 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋𝐵)
2 grpinvnzcl.b . . . 4 𝐵 = (Base‘𝐺)
3 grpinvnzcl.n . . . 4 𝑁 = (invg𝐺)
42, 3grpinvcl 18872 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
51, 4sylan2 594 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ 𝐵)
6 eldifsn 4791 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
7 grpinvnzcl.z . . . . 5 0 = (0g𝐺)
82, 7, 3grpinvnz 18894 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
983expb 1121 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑋0 )) → (𝑁𝑋) ≠ 0 )
106, 9sylan2b 595 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ≠ 0 )
11 eldifsn 4791 . 2 ((𝑁𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑋) ≠ 0 ))
125, 10, 11sylanbrc 584 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  cdif 3946  {csn 4629  cfv 6544  Basecbs 17144  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823
This theorem is referenced by:  islindf4  21393  baerlem5amN  40587  baerlem5bmN  40588  baerlem5abmN  40589  lindslinindsimp1  47138  lindslinindsimp2lem5  47143
  Copyright terms: Public domain W3C validator