![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvnzcl | Structured version Visualization version GIF version |
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvnzcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3883 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
2 | grpinvnzcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvnzcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvcl 17675 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
5 | 1, 4 | sylan2 580 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ 𝐵) |
6 | eldifsn 4454 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
7 | grpinvnzcl.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 2, 7, 3 | grpinvnz 17694 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
9 | 8 | 3expb 1113 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝑋) ≠ 0 ) |
10 | 6, 9 | sylan2b 581 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ≠ 0 ) |
11 | eldifsn 4454 | . 2 ⊢ ((𝑁‘𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑋) ≠ 0 )) | |
12 | 5, 10, 11 | sylanbrc 572 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 {csn 4317 ‘cfv 6030 Basecbs 16064 0gc0g 16308 Grpcgrp 17630 invgcminusg 17631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 |
This theorem is referenced by: islindf4 20394 baerlem5amN 37524 baerlem5bmN 37525 baerlem5abmN 37526 lindslinindsimp1 42769 lindslinindsimp2lem5 42774 |
Copyright terms: Public domain | W3C validator |