| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvnzcl | Structured version Visualization version GIF version | ||
| Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
| grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvnzcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4106 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
| 2 | grpinvnzcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvnzcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 18970 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ 𝐵) |
| 6 | eldifsn 4762 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 7 | grpinvnzcl.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 8 | 2, 7, 3 | grpinvnz 18993 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
| 9 | 8 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝑋) ≠ 0 ) |
| 10 | 6, 9 | sylan2b 594 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ≠ 0 ) |
| 11 | eldifsn 4762 | . 2 ⊢ ((𝑁‘𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑋) ≠ 0 )) | |
| 12 | 5, 10, 11 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 |
| This theorem is referenced by: islindf4 21798 baerlem5amN 41735 baerlem5bmN 41736 baerlem5abmN 41737 lindslinindsimp1 48433 lindslinindsimp2lem5 48438 |
| Copyright terms: Public domain | W3C validator |