MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnzcl Structured version   Visualization version   GIF version

Theorem grpinvnzcl 19029
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnzcl ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem grpinvnzcl
StepHypRef Expression
1 eldifi 4131 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋𝐵)
2 grpinvnzcl.b . . . 4 𝐵 = (Base‘𝐺)
3 grpinvnzcl.n . . . 4 𝑁 = (invg𝐺)
42, 3grpinvcl 19005 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
51, 4sylan2 593 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ 𝐵)
6 eldifsn 4786 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
7 grpinvnzcl.z . . . . 5 0 = (0g𝐺)
82, 7, 3grpinvnz 19028 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
983expb 1121 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑋0 )) → (𝑁𝑋) ≠ 0 )
106, 9sylan2b 594 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ≠ 0 )
11 eldifsn 4786 . 2 ((𝑁𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑋) ≠ 0 ))
125, 10, 11sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626  cfv 6561  Basecbs 17247  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by:  islindf4  21858  baerlem5amN  41718  baerlem5bmN  41719  baerlem5abmN  41720  lindslinindsimp1  48374  lindslinindsimp2lem5  48379
  Copyright terms: Public domain W3C validator