Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinvnzcl | Structured version Visualization version GIF version |
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
grpinvnzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvnzcl.z | ⊢ 0 = (0g‘𝐺) |
grpinvnzcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvnzcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4057 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
2 | grpinvnzcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvnzcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvcl 18542 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
5 | 1, 4 | sylan2 592 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ 𝐵) |
6 | eldifsn 4717 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
7 | grpinvnzcl.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 2, 7, 3 | grpinvnz 18561 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) |
9 | 8 | 3expb 1118 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑁‘𝑋) ≠ 0 ) |
10 | 6, 9 | sylan2b 593 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ≠ 0 ) |
11 | eldifsn 4717 | . 2 ⊢ ((𝑁‘𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑋) ≠ 0 )) | |
12 | 5, 10, 11 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 invgcminusg 18493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 |
This theorem is referenced by: islindf4 20955 baerlem5amN 39657 baerlem5bmN 39658 baerlem5abmN 39659 lindslinindsimp1 45686 lindslinindsimp2lem5 45691 |
Copyright terms: Public domain | W3C validator |