MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnzcl Structured version   Visualization version   GIF version

Theorem grpinvnzcl 18162
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnzcl ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem grpinvnzcl
StepHypRef Expression
1 eldifi 4078 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋𝐵)
2 grpinvnzcl.b . . . 4 𝐵 = (Base‘𝐺)
3 grpinvnzcl.n . . . 4 𝑁 = (invg𝐺)
42, 3grpinvcl 18142 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
51, 4sylan2 595 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ 𝐵)
6 eldifsn 4693 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
7 grpinvnzcl.z . . . . 5 0 = (0g𝐺)
82, 7, 3grpinvnz 18161 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
983expb 1117 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑋0 )) → (𝑁𝑋) ≠ 0 )
106, 9sylan2b 596 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ≠ 0 )
11 eldifsn 4693 . 2 ((𝑁𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑋) ≠ 0 ))
125, 10, 11sylanbrc 586 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wne 3011  cdif 3905  {csn 4539  cfv 6334  Basecbs 16474  0gc0g 16704  Grpcgrp 18094  invgcminusg 18095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342  df-riota 7098  df-ov 7143  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098
This theorem is referenced by:  islindf4  20525  baerlem5amN  38970  baerlem5bmN  38971  baerlem5abmN  38972  lindslinindsimp1  44805  lindslinindsimp2lem5  44810
  Copyright terms: Public domain W3C validator