MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvnzcl Structured version   Visualization version   GIF version

Theorem grpinvnzcl 19042
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnzcl ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem grpinvnzcl
StepHypRef Expression
1 eldifi 4141 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋𝐵)
2 grpinvnzcl.b . . . 4 𝐵 = (Base‘𝐺)
3 grpinvnzcl.n . . . 4 𝑁 = (invg𝐺)
42, 3grpinvcl 19018 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
51, 4sylan2 593 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ 𝐵)
6 eldifsn 4791 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
7 grpinvnzcl.z . . . . 5 0 = (0g𝐺)
82, 7, 3grpinvnz 19041 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
983expb 1119 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑋0 )) → (𝑁𝑋) ≠ 0 )
106, 9sylan2b 594 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ≠ 0 )
11 eldifsn 4791 . 2 ((𝑁𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑋) ≠ 0 ))
125, 10, 11sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  {csn 4631  cfv 6563  Basecbs 17245  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  islindf4  21876  baerlem5amN  41699  baerlem5bmN  41700  baerlem5abmN  41701  lindslinindsimp1  48303  lindslinindsimp2lem5  48308
  Copyright terms: Public domain W3C validator