MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvval Structured version   Visualization version   GIF version

Theorem grpoinvval 30505
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑦)

Proof of Theorem grpoinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.1 . . . 4 𝑋 = ran 𝐺
2 grpinvfval.2 . . . 4 𝑈 = (GId‘𝐺)
3 grpinvfval.3 . . . 4 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvfval 30504 . . 3 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
54fveq1d 6830 . 2 (𝐺 ∈ GrpOp → (𝑁𝐴) = ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴))
6 oveq2 7360 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
76eqeq1d 2735 . . . 4 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
87riotabidv 7311 . . 3 (𝑥 = 𝐴 → (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
9 eqid 2733 . . 3 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
10 riotaex 7313 . . 3 (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V
118, 9, 10fvmpt 6935 . 2 (𝐴𝑋 → ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
125, 11sylan9eq 2788 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5174  ran crn 5620  cfv 6486  crio 7308  (class class class)co 7352  GrpOpcgr 30471  GIdcgi 30472  invcgn 30473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-ginv 30477
This theorem is referenced by:  grpoinvcl  30506  grpoinv  30507
  Copyright terms: Public domain W3C validator