MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvval Structured version   Visualization version   GIF version

Theorem grpoinvval 29776
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 π‘ˆ = (GIdβ€˜πΊ)
grpinvfval.3 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvval ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = π‘ˆ))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝑁(𝑦)

Proof of Theorem grpoinvval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.1 . . . 4 𝑋 = ran 𝐺
2 grpinvfval.2 . . . 4 π‘ˆ = (GIdβ€˜πΊ)
3 grpinvfval.3 . . . 4 𝑁 = (invβ€˜πΊ)
41, 2, 3grpoinvfval 29775 . . 3 (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
54fveq1d 6894 . 2 (𝐺 ∈ GrpOp β†’ (π‘β€˜π΄) = ((π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ))β€˜π΄))
6 oveq2 7417 . . . . 5 (π‘₯ = 𝐴 β†’ (𝑦𝐺π‘₯) = (𝑦𝐺𝐴))
76eqeq1d 2735 . . . 4 (π‘₯ = 𝐴 β†’ ((𝑦𝐺π‘₯) = π‘ˆ ↔ (𝑦𝐺𝐴) = π‘ˆ))
87riotabidv 7367 . . 3 (π‘₯ = 𝐴 β†’ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = π‘ˆ))
9 eqid 2733 . . 3 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ))
10 riotaex 7369 . . 3 (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = π‘ˆ) ∈ V
118, 9, 10fvmpt 6999 . 2 (𝐴 ∈ 𝑋 β†’ ((π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ))β€˜π΄) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = π‘ˆ))
125, 11sylan9eq 2793 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   ↦ cmpt 5232  ran crn 5678  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409  GrpOpcgr 29742  GIdcgi 29743  invcgn 29744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-ginv 29748
This theorem is referenced by:  grpoinvcl  29777  grpoinv  29778
  Copyright terms: Public domain W3C validator