MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvval Structured version   Visualization version   GIF version

Theorem grpoinvval 30543
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑦)

Proof of Theorem grpoinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.1 . . . 4 𝑋 = ran 𝐺
2 grpinvfval.2 . . . 4 𝑈 = (GId‘𝐺)
3 grpinvfval.3 . . . 4 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvfval 30542 . . 3 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
54fveq1d 6907 . 2 (𝐺 ∈ GrpOp → (𝑁𝐴) = ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴))
6 oveq2 7440 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
76eqeq1d 2738 . . . 4 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
87riotabidv 7391 . . 3 (𝑥 = 𝐴 → (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
9 eqid 2736 . . 3 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
10 riotaex 7393 . . 3 (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V
118, 9, 10fvmpt 7015 . 2 (𝐴𝑋 → ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
125, 11sylan9eq 2796 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5224  ran crn 5685  cfv 6560  crio 7388  (class class class)co 7432  GrpOpcgr 30509  GIdcgi 30510  invcgn 30511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-ginv 30515
This theorem is referenced by:  grpoinvcl  30544  grpoinv  30545
  Copyright terms: Public domain W3C validator