Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvval | Structured version Visualization version GIF version |
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | grpinvfval.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
3 | grpinvfval.3 | . . . 4 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvfval 28785 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
5 | 4 | fveq1d 6758 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑁‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴)) |
6 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
7 | 6 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
8 | 7 | riotabidv 7214 | . . 3 ⊢ (𝑥 = 𝐴 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
9 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) | |
10 | riotaex 7216 | . . 3 ⊢ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
12 | 5, 11 | sylan9eq 2799 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 invcgn 28754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-ginv 28758 |
This theorem is referenced by: grpoinvcl 28787 grpoinv 28788 |
Copyright terms: Public domain | W3C validator |