![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoinvval | Structured version Visualization version GIF version |
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | grpinvfval.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
3 | grpinvfval.3 | . . . 4 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvfval 28076 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
5 | 4 | fveq1d 6501 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑁‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴)) |
6 | oveq2 6984 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
7 | 6 | eqeq1d 2780 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
8 | 7 | riotabidv 6939 | . . 3 ⊢ (𝑥 = 𝐴 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
9 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) | |
10 | riotaex 6941 | . . 3 ⊢ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V | |
11 | 8, 9, 10 | fvmpt 6595 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
12 | 5, 11 | sylan9eq 2834 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ↦ cmpt 5008 ran crn 5408 ‘cfv 6188 ℩crio 6936 (class class class)co 6976 GrpOpcgr 28043 GIdcgi 28044 invcgn 28045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-ginv 28049 |
This theorem is referenced by: grpoinvcl 28078 grpoinv 28079 |
Copyright terms: Public domain | W3C validator |