| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvval | Structured version Visualization version GIF version | ||
| Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
| grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpoinvval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinvfval.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | grpinvfval.3 | . . . 4 ⊢ 𝑁 = (inv‘𝐺) | |
| 4 | 1, 2, 3 | grpoinvfval 30504 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 5 | 4 | fveq1d 6830 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑁‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴)) |
| 6 | oveq2 7360 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
| 7 | 6 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
| 8 | 7 | riotabidv 7311 | . . 3 ⊢ (𝑥 = 𝐴 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| 9 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) | |
| 10 | riotaex 7313 | . . 3 ⊢ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6935 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| 12 | 5, 11 | sylan9eq 2788 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 GrpOpcgr 30471 GIdcgi 30472 invcgn 30473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-ginv 30477 |
| This theorem is referenced by: grpoinvcl 30506 grpoinv 30507 |
| Copyright terms: Public domain | W3C validator |