![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoinvval | Structured version Visualization version GIF version |
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvval | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | grpinvfval.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
3 | grpinvfval.3 | . . . 4 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvfval 30450 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
5 | 4 | fveq1d 6893 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑁‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴)) |
6 | oveq2 7422 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
7 | 6 | eqeq1d 2728 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
8 | 7 | riotabidv 7372 | . . 3 ⊢ (𝑥 = 𝐴 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
9 | eqid 2726 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) | |
10 | riotaex 7374 | . . 3 ⊢ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V | |
11 | 8, 9, 10 | fvmpt 6999 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
12 | 5, 11 | sylan9eq 2786 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5227 ran crn 5674 ‘cfv 6544 ℩crio 7369 (class class class)co 7414 GrpOpcgr 30417 GIdcgi 30418 invcgn 30419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-ginv 30423 |
This theorem is referenced by: grpoinvcl 30452 grpoinv 30453 |
Copyright terms: Public domain | W3C validator |