MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvval Structured version   Visualization version   GIF version

Theorem grpoinvval 28786
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvval ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑦)

Proof of Theorem grpoinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.1 . . . 4 𝑋 = ran 𝐺
2 grpinvfval.2 . . . 4 𝑈 = (GId‘𝐺)
3 grpinvfval.3 . . . 4 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvfval 28785 . . 3 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
54fveq1d 6758 . 2 (𝐺 ∈ GrpOp → (𝑁𝐴) = ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴))
6 oveq2 7263 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
76eqeq1d 2740 . . . 4 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
87riotabidv 7214 . . 3 (𝑥 = 𝐴 → (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
9 eqid 2738 . . 3 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
10 riotaex 7216 . . 3 (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ V
118, 9, 10fvmpt 6857 . 2 (𝐴𝑋 → ((𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))‘𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
125, 11sylan9eq 2799 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  ran crn 5581  cfv 6418  crio 7211  (class class class)co 7255  GrpOpcgr 28752  GIdcgi 28753  invcgn 28754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-ginv 28758
This theorem is referenced by:  grpoinvcl  28787  grpoinv  28788
  Copyright terms: Public domain W3C validator