MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 28787
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2738 . . 3 (GId‘𝐺) = (GId‘𝐺)
3 grpinvcl.2 . . 3 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 28786 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)))
51, 2grpoinveu 28782 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))
6 riotacl 7230 . . 3 (∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
84, 7eqeltrd 2839 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃!wreu 3065  ran crn 5581  cfv 6418  crio 7211  (class class class)co 7255  GrpOpcgr 28752  GIdcgi 28753  invcgn 28754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-grpo 28756  df-gid 28757  df-ginv 28758
This theorem is referenced by:  grpoinvid1  28791  grpoinvid2  28792  grpolcan  28793  grpo2inv  28794  grpoinvf  28795  grpoinvop  28796  grpodivinv  28799  grpoinvdiv  28800  grpodivf  28801  grpomuldivass  28804  grponpcan  28806  ablodivdiv4  28817  vcm  28839  rngonegcl  36012  isdrngo2  36043
  Copyright terms: Public domain W3C validator