![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoinvcl | Structured version Visualization version GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2778 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
3 | grpinvcl.2 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvval 27954 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))) |
5 | 1, 2 | grpoinveu 27950 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) |
6 | riotacl 6899 | . . 3 ⊢ (∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) |
8 | 4, 7 | eqeltrd 2859 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃!wreu 3092 ran crn 5358 ‘cfv 6137 ℩crio 6884 (class class class)co 6924 GrpOpcgr 27920 GIdcgi 27921 invcgn 27922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-grpo 27924 df-gid 27925 df-ginv 27926 |
This theorem is referenced by: grpoinvid1 27959 grpoinvid2 27960 grpolcan 27961 grpo2inv 27962 grpoinvf 27963 grpoinvop 27964 grpodivinv 27967 grpoinvdiv 27968 grpodivf 27969 grpomuldivass 27972 grponpcan 27974 ablodivdiv4 27985 vcm 28007 rngonegcl 34355 isdrngo2 34386 |
Copyright terms: Public domain | W3C validator |