| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvcl | Structured version Visualization version GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinvcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpoinvcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid 2729 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 3 | grpinvcl.2 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 4 | 1, 2, 3 | grpoinvval 30452 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))) |
| 5 | 1, 2 | grpoinveu 30448 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) |
| 6 | riotacl 7361 | . . 3 ⊢ (∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) |
| 8 | 4, 7 | eqeltrd 2828 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3352 ran crn 5639 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 GrpOpcgr 30418 GIdcgi 30419 invcgn 30420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-grpo 30422 df-gid 30423 df-ginv 30424 |
| This theorem is referenced by: grpoinvid1 30457 grpoinvid2 30458 grpolcan 30459 grpo2inv 30460 grpoinvf 30461 grpoinvop 30462 grpodivinv 30465 grpoinvdiv 30466 grpodivf 30467 grpomuldivass 30470 grponpcan 30472 ablodivdiv4 30483 vcm 30505 rngonegcl 37921 isdrngo2 37952 |
| Copyright terms: Public domain | W3C validator |