MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 30453
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2729 . . 3 (GId‘𝐺) = (GId‘𝐺)
3 grpinvcl.2 . . 3 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 30452 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)))
51, 2grpoinveu 30448 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))
6 riotacl 7361 . . 3 (∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
84, 7eqeltrd 2828 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3352  ran crn 5639  cfv 6511  crio 7343  (class class class)co 7387  GrpOpcgr 30418  GIdcgi 30419  invcgn 30420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-grpo 30422  df-gid 30423  df-ginv 30424
This theorem is referenced by:  grpoinvid1  30457  grpoinvid2  30458  grpolcan  30459  grpo2inv  30460  grpoinvf  30461  grpoinvop  30462  grpodivinv  30465  grpoinvdiv  30466  grpodivf  30467  grpomuldivass  30470  grponpcan  30472  ablodivdiv4  30483  vcm  30505  rngonegcl  37921  isdrngo2  37952
  Copyright terms: Public domain W3C validator