| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvcl | Structured version Visualization version GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinvcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpoinvcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid 2729 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 3 | grpinvcl.2 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 4 | 1, 2, 3 | grpoinvval 30425 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))) |
| 5 | 1, 2 | grpoinveu 30421 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) |
| 6 | riotacl 7343 | . . 3 ⊢ (∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) |
| 8 | 4, 7 | eqeltrd 2828 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ran crn 5632 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 GrpOpcgr 30391 GIdcgi 30392 invcgn 30393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-grpo 30395 df-gid 30396 df-ginv 30397 |
| This theorem is referenced by: grpoinvid1 30430 grpoinvid2 30431 grpolcan 30432 grpo2inv 30433 grpoinvf 30434 grpoinvop 30435 grpodivinv 30438 grpoinvdiv 30439 grpodivf 30440 grpomuldivass 30443 grponpcan 30445 ablodivdiv4 30456 vcm 30478 rngonegcl 37894 isdrngo2 37925 |
| Copyright terms: Public domain | W3C validator |