MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 28303
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2823 . . 3 (GId‘𝐺) = (GId‘𝐺)
3 grpinvcl.2 . . 3 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 28302 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)))
51, 2grpoinveu 28298 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))
6 riotacl 7133 . . 3 (∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
84, 7eqeltrd 2915 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ∃!wreu 3142  ran crn 5558  cfv 6357  crio 7115  (class class class)co 7158  GrpOpcgr 28268  GIdcgi 28269  invcgn 28270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-grpo 28272  df-gid 28273  df-ginv 28274
This theorem is referenced by:  grpoinvid1  28307  grpoinvid2  28308  grpolcan  28309  grpo2inv  28310  grpoinvf  28311  grpoinvop  28312  grpodivinv  28315  grpoinvdiv  28316  grpodivf  28317  grpomuldivass  28320  grponpcan  28322  ablodivdiv4  28333  vcm  28355  rngonegcl  35207  isdrngo2  35238
  Copyright terms: Public domain W3C validator