Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvcl | Structured version Visualization version GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2740 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
3 | grpinvcl.2 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvval 28881 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))) |
5 | 1, 2 | grpoinveu 28877 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) |
6 | riotacl 7246 | . . 3 ⊢ (∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) |
8 | 4, 7 | eqeltrd 2841 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃!wreu 3068 ran crn 5591 ‘cfv 6432 ℩crio 7227 (class class class)co 7271 GrpOpcgr 28847 GIdcgi 28848 invcgn 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-grpo 28851 df-gid 28852 df-ginv 28853 |
This theorem is referenced by: grpoinvid1 28886 grpoinvid2 28887 grpolcan 28888 grpo2inv 28889 grpoinvf 28890 grpoinvop 28891 grpodivinv 28894 grpoinvdiv 28895 grpodivf 28896 grpomuldivass 28899 grponpcan 28901 ablodivdiv4 28912 vcm 28934 rngonegcl 36081 isdrngo2 36112 |
Copyright terms: Public domain | W3C validator |