MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 30378
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2725 . . 3 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
3 grpinvcl.2 . . 3 𝑁 = (invβ€˜πΊ)
41, 2, 3grpoinvval 30377 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)))
51, 2grpoinveu 30373 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ βˆƒ!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ))
6 riotacl 7390 . . 3 (βˆƒ!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ) β†’ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)) ∈ 𝑋)
84, 7eqeltrd 2825 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆƒ!wreu 3362  ran crn 5673  β€˜cfv 6543  β„©crio 7371  (class class class)co 7416  GrpOpcgr 30343  GIdcgi 30344  invcgn 30345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-grpo 30347  df-gid 30348  df-ginv 30349
This theorem is referenced by:  grpoinvid1  30382  grpoinvid2  30383  grpolcan  30384  grpo2inv  30385  grpoinvf  30386  grpoinvop  30387  grpodivinv  30390  grpoinvdiv  30391  grpodivf  30392  grpomuldivass  30395  grponpcan  30397  ablodivdiv4  30408  vcm  30430  rngonegcl  37457  isdrngo2  37488
  Copyright terms: Public domain W3C validator