MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 29764
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2732 . . 3 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
3 grpinvcl.2 . . 3 𝑁 = (invβ€˜πΊ)
41, 2, 3grpoinvval 29763 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)))
51, 2grpoinveu 29759 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ βˆƒ!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ))
6 riotacl 7379 . . 3 (βˆƒ!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ) β†’ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GIdβ€˜πΊ)) ∈ 𝑋)
84, 7eqeltrd 2833 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒ!wreu 3374  ran crn 5676  β€˜cfv 6540  β„©crio 7360  (class class class)co 7405  GrpOpcgr 29729  GIdcgi 29730  invcgn 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-grpo 29733  df-gid 29734  df-ginv 29735
This theorem is referenced by:  grpoinvid1  29768  grpoinvid2  29769  grpolcan  29770  grpo2inv  29771  grpoinvf  29772  grpoinvop  29773  grpodivinv  29776  grpoinvdiv  29777  grpodivf  29778  grpomuldivass  29781  grponpcan  29783  ablodivdiv4  29794  vcm  29816  rngonegcl  36783  isdrngo2  36814
  Copyright terms: Public domain W3C validator