MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvcl Structured version   Visualization version   GIF version

Theorem grpoinvcl 30556
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvcl.1 𝑋 = ran 𝐺
grpinvcl.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvcl ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)

Proof of Theorem grpoinvcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinvcl.1 . . 3 𝑋 = ran 𝐺
2 eqid 2740 . . 3 (GId‘𝐺) = (GId‘𝐺)
3 grpinvcl.2 . . 3 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 30555 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)))
51, 2grpoinveu 30551 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))
6 riotacl 7422 . . 3 (∃!𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
75, 6syl 17 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋)
84, 7eqeltrd 2844 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ∃!wreu 3386  ran crn 5701  cfv 6573  crio 7403  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522  invcgn 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526  df-ginv 30527
This theorem is referenced by:  grpoinvid1  30560  grpoinvid2  30561  grpolcan  30562  grpo2inv  30563  grpoinvf  30564  grpoinvop  30565  grpodivinv  30568  grpoinvdiv  30569  grpodivf  30570  grpomuldivass  30573  grponpcan  30575  ablodivdiv4  30586  vcm  30608  rngonegcl  37887  isdrngo2  37918
  Copyright terms: Public domain W3C validator