| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | 1, 2, 3 | nvvop 30511 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
| 5 | eqid 2729 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 6 | eqid 2729 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 7 | eqid 2729 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 8 | 5, 2, 3, 6, 7 | nvi 30516 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
| 9 | 8 | simp1d 1142 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
| 10 | 4, 9 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4591 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 ℂcc 11042 ℝcr 11043 0cc0 11044 + caddc 11047 · cmul 11049 ≤ cle 11185 abscabs 15176 CVecOLDcvc 30460 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑠OLD cns 30489 0veccn0v 30490 normCVcnmcv 30492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-1st 7947 df-2nd 7948 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-nmcv 30502 |
| This theorem is referenced by: nvablo 30518 nvsf 30521 nvscl 30528 nvsid 30529 nvsass 30530 nvdi 30532 nvdir 30533 nv2 30534 nv0 30539 nvsz 30540 nvinv 30541 phop 30720 ip0i 30727 ipdirilem 30731 hlvc 30795 |
| Copyright terms: Public domain | W3C validator |