MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 30634
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
nvvc (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 𝑊 = (1st𝑈)
2 eqid 2737 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2737 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
41, 2, 3nvvop 30628 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩)
5 eqid 2737 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
6 eqid 2737 . . . 4 (0vec𝑈) = (0vec𝑈)
7 eqid 2737 . . . 4 (normCV𝑈) = (normCV𝑈)
85, 2, 3, 6, 7nvi 30633 . . 3 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD ∧ (normCV𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV𝑈)‘𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV𝑈)‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · ((normCV𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV𝑈)‘(𝑥( +𝑣𝑈)𝑦)) ≤ (((normCV𝑈)‘𝑥) + ((normCV𝑈)‘𝑦)))))
98simp1d 1143 . 2 (𝑈 ∈ NrmCVec → ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD)
104, 9eqeltrd 2841 1 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cop 4632   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  cle 11296  abscabs 15273  CVecOLDcvc 30577  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607  normCVcnmcv 30609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-1st 8014  df-2nd 8015  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619
This theorem is referenced by:  nvablo  30635  nvsf  30638  nvscl  30645  nvsid  30646  nvsass  30647  nvdi  30649  nvdir  30650  nv2  30651  nv0  30656  nvsz  30657  nvinv  30658  phop  30837  ip0i  30844  ipdirilem  30848  hlvc  30912
  Copyright terms: Public domain W3C validator