MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 30551
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
nvvc (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 𝑊 = (1st𝑈)
2 eqid 2730 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2730 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
41, 2, 3nvvop 30545 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩)
5 eqid 2730 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
6 eqid 2730 . . . 4 (0vec𝑈) = (0vec𝑈)
7 eqid 2730 . . . 4 (normCV𝑈) = (normCV𝑈)
85, 2, 3, 6, 7nvi 30550 . . 3 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD ∧ (normCV𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV𝑈)‘𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV𝑈)‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · ((normCV𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV𝑈)‘(𝑥( +𝑣𝑈)𝑦)) ≤ (((normCV𝑈)‘𝑥) + ((normCV𝑈)‘𝑦)))))
98simp1d 1142 . 2 (𝑈 ∈ NrmCVec → ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD)
104, 9eqeltrd 2829 1 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  cle 11216  abscabs 15207  CVecOLDcvc 30494  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524  normCVcnmcv 30526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536
This theorem is referenced by:  nvablo  30552  nvsf  30555  nvscl  30562  nvsid  30563  nvsass  30564  nvdi  30566  nvdir  30567  nv2  30568  nv0  30573  nvsz  30574  nvinv  30575  phop  30754  ip0i  30761  ipdirilem  30765  hlvc  30829
  Copyright terms: Public domain W3C validator