| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 2 | eqid 2735 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2735 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | 1, 2, 3 | nvvop 30590 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
| 5 | eqid 2735 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 6 | eqid 2735 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 7 | eqid 2735 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 8 | 5, 2, 3, 6, 7 | nvi 30595 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
| 9 | 8 | simp1d 1142 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
| 10 | 4, 9 | eqeltrd 2834 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 〈cop 4607 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 ℂcc 11127 ℝcr 11128 0cc0 11129 + caddc 11132 · cmul 11134 ≤ cle 11270 abscabs 15253 CVecOLDcvc 30539 NrmCVeccnv 30565 +𝑣 cpv 30566 BaseSetcba 30567 ·𝑠OLD cns 30568 0veccn0v 30569 normCVcnmcv 30571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-1st 7988 df-2nd 7989 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-nmcv 30581 |
| This theorem is referenced by: nvablo 30597 nvsf 30600 nvscl 30607 nvsid 30608 nvsass 30609 nvdi 30611 nvdir 30612 nv2 30613 nv0 30618 nvsz 30619 nvinv 30620 phop 30799 ip0i 30806 ipdirilem 30810 hlvc 30874 |
| Copyright terms: Public domain | W3C validator |