| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 2 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2731 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | 1, 2, 3 | nvvop 30581 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
| 5 | eqid 2731 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 6 | eqid 2731 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 7 | eqid 2731 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 8 | 5, 2, 3, 6, 7 | nvi 30586 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
| 9 | 8 | simp1d 1142 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
| 10 | 4, 9 | eqeltrd 2831 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4577 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 ℂcc 10999 ℝcr 11000 0cc0 11001 + caddc 11004 · cmul 11006 ≤ cle 11142 abscabs 15136 CVecOLDcvc 30530 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 ·𝑠OLD cns 30559 0veccn0v 30560 normCVcnmcv 30562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-1st 7916 df-2nd 7917 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-nmcv 30572 |
| This theorem is referenced by: nvablo 30588 nvsf 30591 nvscl 30598 nvsid 30599 nvsass 30600 nvdi 30602 nvdir 30603 nv2 30604 nv0 30609 nvsz 30610 nvinv 30611 phop 30790 ip0i 30797 ipdirilem 30801 hlvc 30865 |
| Copyright terms: Public domain | W3C validator |