| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version | ||
| Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| Ref | Expression |
|---|---|
| nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 2 | eqid 2733 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2733 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | 1, 2, 3 | nvvop 30610 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
| 5 | eqid 2733 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 6 | eqid 2733 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 7 | eqid 2733 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 8 | 5, 2, 3, 6, 7 | nvi 30615 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
| 9 | 8 | simp1d 1142 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
| 10 | 4, 9 | eqeltrd 2833 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4583 class class class wbr 5095 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 ℂcc 11015 ℝcr 11016 0cc0 11017 + caddc 11020 · cmul 11022 ≤ cle 11158 abscabs 15148 CVecOLDcvc 30559 NrmCVeccnv 30585 +𝑣 cpv 30586 BaseSetcba 30587 ·𝑠OLD cns 30588 0veccn0v 30589 normCVcnmcv 30591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-1st 7930 df-2nd 7931 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-nmcv 30601 |
| This theorem is referenced by: nvablo 30617 nvsf 30620 nvscl 30627 nvsid 30628 nvsass 30629 nvdi 30631 nvdir 30632 nv2 30633 nv0 30638 nvsz 30639 nvinv 30640 phop 30819 ip0i 30826 ipdirilem 30830 hlvc 30894 |
| Copyright terms: Public domain | W3C validator |