MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 28977
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
nvvc (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 𝑊 = (1st𝑈)
2 eqid 2738 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2738 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
41, 2, 3nvvop 28971 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩)
5 eqid 2738 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
6 eqid 2738 . . . 4 (0vec𝑈) = (0vec𝑈)
7 eqid 2738 . . . 4 (normCV𝑈) = (normCV𝑈)
85, 2, 3, 6, 7nvi 28976 . . 3 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD ∧ (normCV𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV𝑈)‘𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV𝑈)‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · ((normCV𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV𝑈)‘(𝑥( +𝑣𝑈)𝑦)) ≤ (((normCV𝑈)‘𝑥) + ((normCV𝑈)‘𝑦)))))
98simp1d 1141 . 2 (𝑈 ∈ NrmCVec → ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD)
104, 9eqeltrd 2839 1 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cle 11010  abscabs 14945  CVecOLDcvc 28920  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  0veccn0v 28950  normCVcnmcv 28952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-1st 7831  df-2nd 7832  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962
This theorem is referenced by:  nvablo  28978  nvsf  28981  nvscl  28988  nvsid  28989  nvsass  28990  nvdi  28992  nvdir  28993  nv2  28994  nv0  28999  nvsz  29000  nvinv  29001  phop  29180  ip0i  29187  ipdirilem  29191  hlvc  29255
  Copyright terms: Public domain W3C validator