MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 29906
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 π‘Š = (1st β€˜π‘ˆ)
Assertion
Ref Expression
nvvc (π‘ˆ ∈ NrmCVec β†’ π‘Š ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 π‘Š = (1st β€˜π‘ˆ)
2 eqid 2732 . . 3 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
3 eqid 2732 . . 3 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
41, 2, 3nvvop 29900 . 2 (π‘ˆ ∈ NrmCVec β†’ π‘Š = ⟨( +𝑣 β€˜π‘ˆ), ( ·𝑠OLD β€˜π‘ˆ)⟩)
5 eqid 2732 . . . 4 (BaseSetβ€˜π‘ˆ) = (BaseSetβ€˜π‘ˆ)
6 eqid 2732 . . . 4 (0vecβ€˜π‘ˆ) = (0vecβ€˜π‘ˆ)
7 eqid 2732 . . . 4 (normCVβ€˜π‘ˆ) = (normCVβ€˜π‘ˆ)
85, 2, 3, 6, 7nvi 29905 . . 3 (π‘ˆ ∈ NrmCVec β†’ (⟨( +𝑣 β€˜π‘ˆ), ( ·𝑠OLD β€˜π‘ˆ)⟩ ∈ CVecOLD ∧ (normCVβ€˜π‘ˆ):(BaseSetβ€˜π‘ˆ)βŸΆβ„ ∧ βˆ€π‘₯ ∈ (BaseSetβ€˜π‘ˆ)((((normCVβ€˜π‘ˆ)β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ ((normCVβ€˜π‘ˆ)β€˜(𝑦( ·𝑠OLD β€˜π‘ˆ)π‘₯)) = ((absβ€˜π‘¦) Β· ((normCVβ€˜π‘ˆ)β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘ˆ)((normCVβ€˜π‘ˆ)β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ (((normCVβ€˜π‘ˆ)β€˜π‘₯) + ((normCVβ€˜π‘ˆ)β€˜π‘¦)))))
98simp1d 1142 . 2 (π‘ˆ ∈ NrmCVec β†’ ⟨( +𝑣 β€˜π‘ˆ), ( ·𝑠OLD β€˜π‘ˆ)⟩ ∈ CVecOLD)
104, 9eqeltrd 2833 1 (π‘ˆ ∈ NrmCVec β†’ π‘Š ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βŸ¨cop 4634   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  1st c1st 7975  β„‚cc 11110  β„cr 11111  0cc0 11112   + caddc 11115   Β· cmul 11117   ≀ cle 11251  abscabs 15183  CVecOLDcvc 29849  NrmCVeccnv 29875   +𝑣 cpv 29876  BaseSetcba 29877   ·𝑠OLD cns 29878  0veccn0v 29879  normCVcnmcv 29881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-1st 7977  df-2nd 7978  df-vc 29850  df-nv 29883  df-va 29886  df-ba 29887  df-sm 29888  df-0v 29889  df-nmcv 29891
This theorem is referenced by:  nvablo  29907  nvsf  29910  nvscl  29917  nvsid  29918  nvsass  29919  nvdi  29921  nvdir  29922  nv2  29923  nv0  29928  nvsz  29929  nvinv  29930  phop  30109  ip0i  30116  ipdirilem  30120  hlvc  30184
  Copyright terms: Public domain W3C validator