![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
Ref | Expression |
---|---|
nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
2 | eqid 2825 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2825 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | 1, 2, 3 | nvvop 28019 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
5 | eqid 2825 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
6 | eqid 2825 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | eqid 2825 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
8 | 5, 2, 3, 6, 7 | nvi 28024 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
9 | 8 | simp1d 1178 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
10 | 4, 9 | eqeltrd 2906 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3117 〈cop 4403 class class class wbr 4873 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 1st c1st 7426 ℂcc 10250 ℝcr 10251 0cc0 10252 + caddc 10255 · cmul 10257 ≤ cle 10392 abscabs 14351 CVecOLDcvc 27968 NrmCVeccnv 27994 +𝑣 cpv 27995 BaseSetcba 27996 ·𝑠OLD cns 27997 0veccn0v 27998 normCVcnmcv 28000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-1st 7428 df-2nd 7429 df-vc 27969 df-nv 28002 df-va 28005 df-ba 28006 df-sm 28007 df-0v 28008 df-nmcv 28010 |
This theorem is referenced by: nvablo 28026 nvsf 28029 nvscl 28036 nvsid 28037 nvsass 28038 nvdi 28040 nvdir 28041 nv2 28042 nv0 28047 nvsz 28048 nvinv 28049 phop 28228 ip0i 28235 ipdirilem 28239 hlvc 28304 |
Copyright terms: Public domain | W3C validator |