![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
Ref | Expression |
---|---|
nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
2 | eqid 2725 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2725 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | 1, 2, 3 | nvvop 30534 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
5 | eqid 2725 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
6 | eqid 2725 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | eqid 2725 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
8 | 5, 2, 3, 6, 7 | nvi 30539 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
9 | 8 | simp1d 1139 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
10 | 4, 9 | eqeltrd 2825 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 〈cop 4638 class class class wbr 5152 ⟶wf 6549 ‘cfv 6553 (class class class)co 7423 1st c1st 8000 ℂcc 11152 ℝcr 11153 0cc0 11154 + caddc 11157 · cmul 11159 ≤ cle 11295 abscabs 15234 CVecOLDcvc 30483 NrmCVeccnv 30509 +𝑣 cpv 30510 BaseSetcba 30511 ·𝑠OLD cns 30512 0veccn0v 30513 normCVcnmcv 30515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-1st 8002 df-2nd 8003 df-vc 30484 df-nv 30517 df-va 30520 df-ba 30521 df-sm 30522 df-0v 30523 df-nmcv 30525 |
This theorem is referenced by: nvablo 30541 nvsf 30544 nvscl 30551 nvsid 30552 nvsass 30553 nvdi 30555 nvdir 30556 nv2 30557 nv0 30562 nvsz 30563 nvinv 30564 phop 30743 ip0i 30750 ipdirilem 30754 hlvc 30818 |
Copyright terms: Public domain | W3C validator |