HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddfni Structured version   Visualization version   GIF version

Theorem hoaddfni 29875
Description: Functionality of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddfni (𝑆 +op 𝑇) Fn ℋ

Proof of Theorem hoaddfni
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
31, 2hoaddcli 29873 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
4 ffn 6564 . 2 ((𝑆 +op 𝑇): ℋ⟶ ℋ → (𝑆 +op 𝑇) Fn ℋ)
53, 4ax-mp 5 1 (𝑆 +op 𝑇) Fn ℋ
Colors of variables: wff setvar class
Syntax hints:   Fn wfn 6393  wf 6394  (class class class)co 7232  chba 29024   +op chos 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-hilex 29104  ax-hfvadd 29105
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-map 8531  df-hosum 29835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator