Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoaddfni | Structured version Visualization version GIF version |
Description: Functionality of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hoaddfni | ⊢ (𝑆 +op 𝑇) Fn ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | 1, 2 | hoaddcli 29873 | . 2 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
4 | ffn 6564 | . 2 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → (𝑆 +op 𝑇) Fn ℋ) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝑆 +op 𝑇) Fn ℋ |
Colors of variables: wff setvar class |
Syntax hints: Fn wfn 6393 ⟶wf 6394 (class class class)co 7232 ℋchba 29024 +op chos 29043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-hilex 29104 ax-hfvadd 29105 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-ov 7235 df-oprab 7236 df-mpo 7237 df-map 8531 df-hosum 29835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |