HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hosubcli Structured version   Visualization version   GIF version

Theorem hosubcli 31698
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hosubcli (𝑆op 𝑇): ℋ⟶ ℋ

Proof of Theorem hosubcli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
3 hodmval 31666 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))))
41, 2, 3mp2an 692 . 2 (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))
51ffvelcdmi 7055 . . 3 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
62ffvelcdmi 7055 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubcl 30946 . . 3 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) − (𝑇𝑥)) ∈ ℋ)
85, 6, 7syl2anc 584 . 2 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) ∈ ℋ)
94, 8fmpti 7084 1 (𝑆op 𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  chba 30848   cmv 30854  op chod 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hilex 30928  ax-hfvadd 30929  ax-hfvmul 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-hvsub 30900  df-hodif 31661
This theorem is referenced by:  hosubfni  31700  hosubcl  31702  hodsi  31704  hocsubdiri  31709  hodseqi  31723  ho0subi  31724  honegsubi  31725  hoaddsubi  31750  hosd1i  31751  honpncani  31756  hoddii  31918  unierri  32033  pjddii  32085
  Copyright terms: Public domain W3C validator