HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hosubcli Structured version   Visualization version   GIF version

Theorem hosubcli 31744
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hosubcli (𝑆op 𝑇): ℋ⟶ ℋ

Proof of Theorem hosubcli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . 3 𝑆: ℋ⟶ ℋ
2 hoeq.2 . . 3 𝑇: ℋ⟶ ℋ
3 hodmval 31712 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))))
41, 2, 3mp2an 692 . 2 (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))
51ffvelcdmi 7016 . . 3 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
62ffvelcdmi 7016 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubcl 30992 . . 3 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) − (𝑇𝑥)) ∈ ℋ)
85, 6, 7syl2anc 584 . 2 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) ∈ ℋ)
94, 8fmpti 7045 1 (𝑆op 𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  chba 30894   cmv 30900  op chod 30915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-hilex 30974  ax-hfvadd 30975  ax-hfvmul 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344  df-hvsub 30946  df-hodif 31707
This theorem is referenced by:  hosubfni  31746  hosubcl  31748  hodsi  31750  hocsubdiri  31755  hodseqi  31769  ho0subi  31770  honegsubi  31771  hoaddsubi  31796  hosd1i  31797  honpncani  31802  hoddii  31964  unierri  32079  pjddii  32131
  Copyright terms: Public domain W3C validator