![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosubcli | Structured version Visualization version GIF version |
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hosubcli | ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | hodmval 30955 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
5 | 1 | ffvelcdmi 7073 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
6 | 2 | ffvelcdmi 7073 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
7 | hvsubcl 30235 | . . 3 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
8 | 5, 6, 7 | syl2anc 585 | . 2 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) ∈ ℋ) |
9 | 4, 8 | fmpti 7099 | 1 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ↦ cmpt 5227 ⟶wf 6531 ‘cfv 6535 (class class class)co 7396 ℋchba 30137 −ℎ cmv 30143 −op chod 30158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-hilex 30217 ax-hfvadd 30218 ax-hfvmul 30223 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-ltxr 11240 df-sub 11433 df-neg 11434 df-hvsub 30189 df-hodif 30950 |
This theorem is referenced by: hosubfni 30989 hosubcl 30991 hodsi 30993 hocsubdiri 30998 hodseqi 31012 ho0subi 31013 honegsubi 31014 hoaddsubi 31039 hosd1i 31040 honpncani 31045 hoddii 31207 unierri 31322 pjddii 31374 |
Copyright terms: Public domain | W3C validator |