![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosubcli | Structured version Visualization version GIF version |
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hosubcli | ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | hodmval 29185 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) | |
4 | 1, 2, 3 | mp2an 682 | . 2 ⊢ (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
5 | 1 | ffvelrni 6624 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
6 | 2 | ffvelrni 6624 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
7 | hvsubcl 28463 | . . 3 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
8 | 5, 6, 7 | syl2anc 579 | . 2 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) ∈ ℋ) |
9 | 4, 8 | fmpti 6648 | 1 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ↦ cmpt 4967 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ℋchba 28365 −ℎ cmv 28371 −op chod 28386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-hilex 28445 ax-hfvadd 28446 ax-hfvmul 28451 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 df-sub 10610 df-neg 10611 df-hvsub 28417 df-hodif 29180 |
This theorem is referenced by: hosubfni 29219 hosubcl 29221 hodsi 29223 hocsubdiri 29228 hodseqi 29242 ho0subi 29243 honegsubi 29244 hoaddsubi 29269 hosd1i 29270 honpncani 29275 hoddii 29437 unierri 29552 pjddii 29604 |
Copyright terms: Public domain | W3C validator |