![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopco0i | Structured version Visualization version GIF version |
Description: The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopco.1 | ⊢ 𝑆 ∈ LinOp |
lnopco.2 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopco0i | ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5858 | . . 3 ⊢ (𝑇 = 0hop → (𝑆 ∘ 𝑇) = (𝑆 ∘ 0hop )) | |
2 | lnopco.1 | . . . . . . . 8 ⊢ 𝑆 ∈ LinOp | |
3 | 0lnop 31232 | . . . . . . . 8 ⊢ 0hop ∈ LinOp | |
4 | 2, 3 | lnopcoi 31251 | . . . . . . 7 ⊢ (𝑆 ∘ 0hop ) ∈ LinOp |
5 | 4 | lnopfi 31217 | . . . . . 6 ⊢ (𝑆 ∘ 0hop ): ℋ⟶ ℋ |
6 | ffn 6717 | . . . . . 6 ⊢ ((𝑆 ∘ 0hop ): ℋ⟶ ℋ → (𝑆 ∘ 0hop ) Fn ℋ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 0hop ) Fn ℋ |
8 | ho0f 30999 | . . . . . 6 ⊢ 0hop : ℋ⟶ ℋ | |
9 | ffn 6717 | . . . . . 6 ⊢ ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ 0hop Fn ℋ |
11 | eqfnfv 7032 | . . . . 5 ⊢ (((𝑆 ∘ 0hop ) Fn ℋ ∧ 0hop Fn ℋ) → ((𝑆 ∘ 0hop ) = 0hop ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥))) | |
12 | 7, 10, 11 | mp2an 690 | . . . 4 ⊢ ((𝑆 ∘ 0hop ) = 0hop ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥)) |
13 | ho0val 30998 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
14 | 13 | fveq2d 6895 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘( 0hop ‘𝑥)) = (𝑆‘0ℎ)) |
15 | 2 | lnop0i 31218 | . . . . . 6 ⊢ (𝑆‘0ℎ) = 0ℎ |
16 | 14, 15 | eqtrdi 2788 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘( 0hop ‘𝑥)) = 0ℎ) |
17 | 2 | lnopfi 31217 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ |
18 | 17, 8 | hocoi 31012 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 0hop )‘𝑥) = (𝑆‘( 0hop ‘𝑥))) |
19 | 16, 18, 13 | 3eqtr4d 2782 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥)) |
20 | 12, 19 | mprgbir 3068 | . . 3 ⊢ (𝑆 ∘ 0hop ) = 0hop |
21 | 1, 20 | eqtrdi 2788 | . 2 ⊢ (𝑇 = 0hop → (𝑆 ∘ 𝑇) = 0hop ) |
22 | lnopco.2 | . . 3 ⊢ 𝑇 ∈ LinOp | |
23 | 22 | nmlnop0iHIL 31244 | . 2 ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) |
24 | 2, 22 | lnopcoi 31251 | . . 3 ⊢ (𝑆 ∘ 𝑇) ∈ LinOp |
25 | 24 | nmlnop0iHIL 31244 | . 2 ⊢ ((normop‘(𝑆 ∘ 𝑇)) = 0 ↔ (𝑆 ∘ 𝑇) = 0hop ) |
26 | 21, 23, 25 | 3imtr4i 291 | 1 ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∘ ccom 5680 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 0cc0 11109 ℋchba 30167 0ℎc0v 30172 0hop ch0o 30191 normopcnop 30193 LinOpclo 30195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvmulass 30255 ax-hvdistr1 30256 ax-hvdistr2 30257 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 ax-hcompl 30450 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-cn 22730 df-cnp 22731 df-lm 22732 df-haus 22818 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-xms 23825 df-ms 23826 df-tms 23827 df-cfil 24771 df-cau 24772 df-cmet 24773 df-grpo 29741 df-gid 29742 df-ginv 29743 df-gdiv 29744 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-vs 29847 df-nmcv 29848 df-ims 29849 df-dip 29949 df-ssp 29970 df-lno 29992 df-nmoo 29993 df-0o 29995 df-ph 30061 df-cbn 30111 df-hnorm 30216 df-hba 30217 df-hvsub 30219 df-hlim 30220 df-hcau 30221 df-sh 30455 df-ch 30469 df-oc 30500 df-ch0 30501 df-shs 30556 df-pjh 30643 df-h0op 30996 df-nmop 31087 df-lnop 31089 df-hmop 31092 |
This theorem is referenced by: nmopcoi 31343 |
Copyright terms: Public domain | W3C validator |