Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnopco0i | Structured version Visualization version GIF version |
Description: The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopco.1 | ⊢ 𝑆 ∈ LinOp |
lnopco.2 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopco0i | ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5691 | . . 3 ⊢ (𝑇 = 0hop → (𝑆 ∘ 𝑇) = (𝑆 ∘ 0hop )) | |
2 | lnopco.1 | . . . . . . . 8 ⊢ 𝑆 ∈ LinOp | |
3 | 0lnop 29851 | . . . . . . . 8 ⊢ 0hop ∈ LinOp | |
4 | 2, 3 | lnopcoi 29870 | . . . . . . 7 ⊢ (𝑆 ∘ 0hop ) ∈ LinOp |
5 | 4 | lnopfi 29836 | . . . . . 6 ⊢ (𝑆 ∘ 0hop ): ℋ⟶ ℋ |
6 | ffn 6491 | . . . . . 6 ⊢ ((𝑆 ∘ 0hop ): ℋ⟶ ℋ → (𝑆 ∘ 0hop ) Fn ℋ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 0hop ) Fn ℋ |
8 | ho0f 29618 | . . . . . 6 ⊢ 0hop : ℋ⟶ ℋ | |
9 | ffn 6491 | . . . . . 6 ⊢ ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ 0hop Fn ℋ |
11 | eqfnfv 6786 | . . . . 5 ⊢ (((𝑆 ∘ 0hop ) Fn ℋ ∧ 0hop Fn ℋ) → ((𝑆 ∘ 0hop ) = 0hop ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥))) | |
12 | 7, 10, 11 | mp2an 692 | . . . 4 ⊢ ((𝑆 ∘ 0hop ) = 0hop ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥)) |
13 | ho0val 29617 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
14 | 13 | fveq2d 6655 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘( 0hop ‘𝑥)) = (𝑆‘0ℎ)) |
15 | 2 | lnop0i 29837 | . . . . . 6 ⊢ (𝑆‘0ℎ) = 0ℎ |
16 | 14, 15 | eqtrdi 2810 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘( 0hop ‘𝑥)) = 0ℎ) |
17 | 2 | lnopfi 29836 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ |
18 | 17, 8 | hocoi 29631 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 0hop )‘𝑥) = (𝑆‘( 0hop ‘𝑥))) |
19 | 16, 18, 13 | 3eqtr4d 2804 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 0hop )‘𝑥) = ( 0hop ‘𝑥)) |
20 | 12, 19 | mprgbir 3083 | . . 3 ⊢ (𝑆 ∘ 0hop ) = 0hop |
21 | 1, 20 | eqtrdi 2810 | . 2 ⊢ (𝑇 = 0hop → (𝑆 ∘ 𝑇) = 0hop ) |
22 | lnopco.2 | . . 3 ⊢ 𝑇 ∈ LinOp | |
23 | 22 | nmlnop0iHIL 29863 | . 2 ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) |
24 | 2, 22 | lnopcoi 29870 | . . 3 ⊢ (𝑆 ∘ 𝑇) ∈ LinOp |
25 | 24 | nmlnop0iHIL 29863 | . 2 ⊢ ((normop‘(𝑆 ∘ 𝑇)) = 0 ↔ (𝑆 ∘ 𝑇) = 0hop ) |
26 | 21, 23, 25 | 3imtr4i 296 | 1 ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ∀wral 3068 ∘ ccom 5521 Fn wfn 6323 ⟶wf 6324 ‘cfv 6328 0cc0 10560 ℋchba 28786 0ℎc0v 28791 0hop ch0o 28810 normopcnop 28812 LinOpclo 28814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 ax-cc 9880 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 ax-addf 10639 ax-mulf 10640 ax-hilex 28866 ax-hfvadd 28867 ax-hvcom 28868 ax-hvass 28869 ax-hv0cl 28870 ax-hvaddid 28871 ax-hfvmul 28872 ax-hvmulid 28873 ax-hvmulass 28874 ax-hvdistr1 28875 ax-hvdistr2 28876 ax-hvmul0 28877 ax-hfi 28946 ax-his1 28949 ax-his2 28950 ax-his3 28951 ax-his4 28952 ax-hcompl 29069 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-2o 8106 df-oadd 8109 df-omul 8110 df-er 8292 df-map 8411 df-pm 8412 df-ixp 8473 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-fi 8893 df-sup 8924 df-inf 8925 df-oi 8992 df-card 9386 df-acn 9389 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-q 12374 df-rp 12416 df-xneg 12533 df-xadd 12534 df-xmul 12535 df-ioo 12768 df-ico 12770 df-icc 12771 df-fz 12925 df-fzo 13068 df-fl 13196 df-seq 13404 df-exp 13465 df-hash 13726 df-cj 14491 df-re 14492 df-im 14493 df-sqrt 14627 df-abs 14628 df-clim 14878 df-rlim 14879 df-sum 15076 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-starv 16623 df-sca 16624 df-vsca 16625 df-ip 16626 df-tset 16627 df-ple 16628 df-ds 16630 df-unif 16631 df-hom 16632 df-cco 16633 df-rest 16739 df-topn 16740 df-0g 16758 df-gsum 16759 df-topgen 16760 df-pt 16761 df-prds 16764 df-xrs 16818 df-qtop 16823 df-imas 16824 df-xps 16826 df-mre 16900 df-mrc 16901 df-acs 16903 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-submnd 18008 df-mulg 18277 df-cntz 18499 df-cmn 18960 df-psmet 20143 df-xmet 20144 df-met 20145 df-bl 20146 df-mopn 20147 df-fbas 20148 df-fg 20149 df-cnfld 20152 df-top 21579 df-topon 21596 df-topsp 21618 df-bases 21631 df-cld 21704 df-ntr 21705 df-cls 21706 df-nei 21783 df-cn 21912 df-cnp 21913 df-lm 21914 df-haus 22000 df-tx 22247 df-hmeo 22440 df-fil 22531 df-fm 22623 df-flim 22624 df-flf 22625 df-xms 23007 df-ms 23008 df-tms 23009 df-cfil 23940 df-cau 23941 df-cmet 23942 df-grpo 28360 df-gid 28361 df-ginv 28362 df-gdiv 28363 df-ablo 28412 df-vc 28426 df-nv 28459 df-va 28462 df-ba 28463 df-sm 28464 df-0v 28465 df-vs 28466 df-nmcv 28467 df-ims 28468 df-dip 28568 df-ssp 28589 df-lno 28611 df-nmoo 28612 df-0o 28614 df-ph 28680 df-cbn 28730 df-hnorm 28835 df-hba 28836 df-hvsub 28838 df-hlim 28839 df-hcau 28840 df-sh 29074 df-ch 29088 df-oc 29119 df-ch0 29120 df-shs 29175 df-pjh 29262 df-h0op 29615 df-nmop 29706 df-lnop 29708 df-hmop 29711 |
This theorem is referenced by: nmopcoi 29962 |
Copyright terms: Public domain | W3C validator |