| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoddii | Structured version Visualization version GIF version | ||
| Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31766 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoddi.1 | ⊢ 𝑅 ∈ LinOp |
| hoddi.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoddi.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoddii | ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoddi.2 | . . . . . . 7 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7078 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 3 | hoddi.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7078 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 5 | hoddi.1 | . . . . . . 7 ⊢ 𝑅 ∈ LinOp | |
| 6 | 5 | lnopsubi 31960 | . . . . . 6 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
| 7 | 2, 4, 6 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
| 8 | hodval 31728 | . . . . . . 7 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
| 9 | 1, 3, 8 | mp3an12 1453 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
| 10 | 9 | fveq2d 6885 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
| 11 | 5 | lnopfi 31955 | . . . . . . 7 ⊢ 𝑅: ℋ⟶ ℋ |
| 12 | 11, 1 | hocoi 31750 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑆)‘𝑥) = (𝑅‘(𝑆‘𝑥))) |
| 13 | 11, 3 | hocoi 31750 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
| 14 | 12, 13 | oveq12d 7428 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
| 15 | 7, 10, 14 | 3eqtr4d 2781 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
| 16 | 1, 3 | hosubcli 31755 | . . . . 5 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
| 17 | 11, 16 | hocoi 31750 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (𝑅‘((𝑆 −op 𝑇)‘𝑥))) |
| 18 | 11, 1 | hocofi 31752 | . . . . 5 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
| 19 | 11, 3 | hocofi 31752 | . . . . 5 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
| 20 | hodval 31728 | . . . . 5 ⊢ (((𝑅 ∘ 𝑆): ℋ⟶ ℋ ∧ (𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) | |
| 21 | 18, 19, 20 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
| 22 | 15, 17, 21 | 3eqtr4d 2781 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥)) |
| 23 | 22 | rgen 3054 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) |
| 24 | 11, 16 | hocofi 31752 | . . 3 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)): ℋ⟶ ℋ |
| 25 | 18, 19 | hosubcli 31755 | . . 3 ⊢ ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)): ℋ⟶ ℋ |
| 26 | 24, 25 | hoeqi 31747 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) |
| 27 | 23, 26 | mpbi 230 | 1 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 −ℎ cmv 30911 −op chod 30926 LinOpclo 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hilex 30985 ax-hfvadd 30986 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvdistr2 30995 ax-hvmul0 30996 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-hvsub 30957 df-hodif 31718 df-lnop 31827 |
| This theorem is referenced by: hoddi 31976 unierri 32090 |
| Copyright terms: Public domain | W3C validator |