![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hoddii | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31028 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoddi.1 | ⊢ 𝑅 ∈ LinOp |
hoddi.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hoddi.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hoddii | ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoddi.2 | . . . . . . 7 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | 1 | ffvelcdmi 7085 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
3 | hoddi.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
4 | 3 | ffvelcdmi 7085 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
5 | hoddi.1 | . . . . . . 7 ⊢ 𝑅 ∈ LinOp | |
6 | 5 | lnopsubi 31222 | . . . . . 6 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
7 | 2, 4, 6 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
8 | hodval 30990 | . . . . . . 7 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
9 | 1, 3, 8 | mp3an12 1451 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
10 | 9 | fveq2d 6895 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
11 | 5 | lnopfi 31217 | . . . . . . 7 ⊢ 𝑅: ℋ⟶ ℋ |
12 | 11, 1 | hocoi 31012 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑆)‘𝑥) = (𝑅‘(𝑆‘𝑥))) |
13 | 11, 3 | hocoi 31012 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
14 | 12, 13 | oveq12d 7426 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
15 | 7, 10, 14 | 3eqtr4d 2782 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
16 | 1, 3 | hosubcli 31017 | . . . . 5 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
17 | 11, 16 | hocoi 31012 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (𝑅‘((𝑆 −op 𝑇)‘𝑥))) |
18 | 11, 1 | hocofi 31014 | . . . . 5 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
19 | 11, 3 | hocofi 31014 | . . . . 5 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
20 | hodval 30990 | . . . . 5 ⊢ (((𝑅 ∘ 𝑆): ℋ⟶ ℋ ∧ (𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) | |
21 | 18, 19, 20 | mp3an12 1451 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
22 | 15, 17, 21 | 3eqtr4d 2782 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥)) |
23 | 22 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) |
24 | 11, 16 | hocofi 31014 | . . 3 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)): ℋ⟶ ℋ |
25 | 18, 19 | hosubcli 31017 | . . 3 ⊢ ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)): ℋ⟶ ℋ |
26 | 24, 25 | hoeqi 31009 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) |
27 | 23, 26 | mpbi 229 | 1 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℋchba 30167 −ℎ cmv 30173 −op chod 30188 LinOpclo 30195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-hilex 30247 ax-hfvadd 30248 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvdistr2 30257 ax-hvmul0 30258 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 df-hvsub 30219 df-hodif 30980 df-lnop 31089 |
This theorem is referenced by: hoddi 31238 unierri 31352 |
Copyright terms: Public domain | W3C validator |