HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoddii Structured version   Visualization version   GIF version

Theorem hoddii 31737
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31528 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoddi.1 𝑅 ∈ LinOp
hoddi.2 𝑆: ℋ⟶ ℋ
hoddi.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoddii (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))

Proof of Theorem hoddii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoddi.2 . . . . . . 7 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7076 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoddi.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7076 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 hoddi.1 . . . . . . 7 𝑅 ∈ LinOp
65lnopsubi 31722 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
72, 4, 6syl2anc 583 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
8 hodval 31490 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
91, 3, 8mp3an12 1447 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
109fveq2d 6886 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (𝑅‘((𝑆𝑥) − (𝑇𝑥))))
115lnopfi 31717 . . . . . . 7 𝑅: ℋ⟶ ℋ
1211, 1hocoi 31512 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑆)‘𝑥) = (𝑅‘(𝑆𝑥)))
1311, 3hocoi 31512 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
1412, 13oveq12d 7420 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
157, 10, 143eqtr4d 2774 . . . 4 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
161, 3hosubcli 31517 . . . . 5 (𝑆op 𝑇): ℋ⟶ ℋ
1711, 16hocoi 31512 . . . 4 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (𝑅‘((𝑆op 𝑇)‘𝑥)))
1811, 1hocofi 31514 . . . . 5 (𝑅𝑆): ℋ⟶ ℋ
1911, 3hocofi 31514 . . . . 5 (𝑅𝑇): ℋ⟶ ℋ
20 hodval 31490 . . . . 5 (((𝑅𝑆): ℋ⟶ ℋ ∧ (𝑅𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2118, 19, 20mp3an12 1447 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2215, 17, 213eqtr4d 2774 . . 3 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥))
2322rgen 3055 . 2 𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥)
2411, 16hocofi 31514 . . 3 (𝑅 ∘ (𝑆op 𝑇)): ℋ⟶ ℋ
2518, 19hosubcli 31517 . . 3 ((𝑅𝑆) −op (𝑅𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31509 . 2 (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇)))
2723, 26mpbi 229 1 (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wral 3053  ccom 5671  wf 6530  cfv 6534  (class class class)co 7402  chba 30667   cmv 30673  op chod 30688  LinOpclo 30695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-hilex 30747  ax-hfvadd 30748  ax-hvass 30750  ax-hv0cl 30751  ax-hvaddid 30752  ax-hfvmul 30753  ax-hvmulid 30754  ax-hvdistr2 30757  ax-hvmul0 30758
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445  df-neg 11446  df-hvsub 30719  df-hodif 31480  df-lnop 31589
This theorem is referenced by:  hoddi  31738  unierri  31852
  Copyright terms: Public domain W3C validator