HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoddii Structured version   Visualization version   GIF version

Theorem hoddii 30980
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 30771 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoddi.1 𝑅 ∈ LinOp
hoddi.2 𝑆: ℋ⟶ ℋ
hoddi.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoddii (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))

Proof of Theorem hoddii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoddi.2 . . . . . . 7 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7038 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoddi.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7038 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 hoddi.1 . . . . . . 7 𝑅 ∈ LinOp
65lnopsubi 30965 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
72, 4, 6syl2anc 585 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
8 hodval 30733 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
91, 3, 8mp3an12 1452 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
109fveq2d 6850 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (𝑅‘((𝑆𝑥) − (𝑇𝑥))))
115lnopfi 30960 . . . . . . 7 𝑅: ℋ⟶ ℋ
1211, 1hocoi 30755 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑆)‘𝑥) = (𝑅‘(𝑆𝑥)))
1311, 3hocoi 30755 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
1412, 13oveq12d 7379 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
157, 10, 143eqtr4d 2783 . . . 4 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
161, 3hosubcli 30760 . . . . 5 (𝑆op 𝑇): ℋ⟶ ℋ
1711, 16hocoi 30755 . . . 4 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (𝑅‘((𝑆op 𝑇)‘𝑥)))
1811, 1hocofi 30757 . . . . 5 (𝑅𝑆): ℋ⟶ ℋ
1911, 3hocofi 30757 . . . . 5 (𝑅𝑇): ℋ⟶ ℋ
20 hodval 30733 . . . . 5 (((𝑅𝑆): ℋ⟶ ℋ ∧ (𝑅𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2118, 19, 20mp3an12 1452 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2215, 17, 213eqtr4d 2783 . . 3 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥))
2322rgen 3063 . 2 𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥)
2411, 16hocofi 30757 . . 3 (𝑅 ∘ (𝑆op 𝑇)): ℋ⟶ ℋ
2518, 19hosubcli 30760 . . 3 ((𝑅𝑆) −op (𝑅𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 30752 . 2 (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇)))
2723, 26mpbi 229 1 (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  wral 3061  ccom 5641  wf 6496  cfv 6500  (class class class)co 7361  chba 29910   cmv 29916  op chod 29931  LinOpclo 29938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-hilex 29990  ax-hfvadd 29991  ax-hvass 29993  ax-hv0cl 29994  ax-hvaddid 29995  ax-hfvmul 29996  ax-hvmulid 29997  ax-hvdistr2 30000  ax-hvmul0 30001
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-ltxr 11202  df-sub 11395  df-neg 11396  df-hvsub 29962  df-hodif 30723  df-lnop 30832
This theorem is referenced by:  hoddi  30981  unierri  31095
  Copyright terms: Public domain W3C validator