HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoddii Structured version   Visualization version   GIF version

Theorem hoddii 32021
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31812 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoddi.1 𝑅 ∈ LinOp
hoddi.2 𝑆: ℋ⟶ ℋ
hoddi.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoddii (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))

Proof of Theorem hoddii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoddi.2 . . . . . . 7 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7117 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoddi.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7117 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 hoddi.1 . . . . . . 7 𝑅 ∈ LinOp
65lnopsubi 32006 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
72, 4, 6syl2anc 583 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
8 hodval 31774 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
91, 3, 8mp3an12 1451 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
109fveq2d 6924 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (𝑅‘((𝑆𝑥) − (𝑇𝑥))))
115lnopfi 32001 . . . . . . 7 𝑅: ℋ⟶ ℋ
1211, 1hocoi 31796 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑆)‘𝑥) = (𝑅‘(𝑆𝑥)))
1311, 3hocoi 31796 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
1412, 13oveq12d 7466 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
157, 10, 143eqtr4d 2790 . . . 4 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
161, 3hosubcli 31801 . . . . 5 (𝑆op 𝑇): ℋ⟶ ℋ
1711, 16hocoi 31796 . . . 4 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (𝑅‘((𝑆op 𝑇)‘𝑥)))
1811, 1hocofi 31798 . . . . 5 (𝑅𝑆): ℋ⟶ ℋ
1911, 3hocofi 31798 . . . . 5 (𝑅𝑇): ℋ⟶ ℋ
20 hodval 31774 . . . . 5 (((𝑅𝑆): ℋ⟶ ℋ ∧ (𝑅𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2118, 19, 20mp3an12 1451 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2215, 17, 213eqtr4d 2790 . . 3 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥))
2322rgen 3069 . 2 𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥)
2411, 16hocofi 31798 . . 3 (𝑅 ∘ (𝑆op 𝑇)): ℋ⟶ ℋ
2518, 19hosubcli 31801 . . 3 ((𝑅𝑆) −op (𝑅𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31793 . 2 (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇)))
2723, 26mpbi 230 1 (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  chba 30951   cmv 30957  op chod 30972  LinOpclo 30979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hilex 31031  ax-hfvadd 31032  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-hvsub 31003  df-hodif 31764  df-lnop 31873
This theorem is referenced by:  hoddi  32022  unierri  32136
  Copyright terms: Public domain W3C validator