HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoddii Structured version   Visualization version   GIF version

Theorem hoddii 31812
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31603 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoddi.1 𝑅 ∈ LinOp
hoddi.2 𝑆: ℋ⟶ ℋ
hoddi.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoddii (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))

Proof of Theorem hoddii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoddi.2 . . . . . . 7 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7093 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoddi.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7093 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 hoddi.1 . . . . . . 7 𝑅 ∈ LinOp
65lnopsubi 31797 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
72, 4, 6syl2anc 583 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆𝑥) − (𝑇𝑥))) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
8 hodval 31565 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
91, 3, 8mp3an12 1448 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
109fveq2d 6901 . . . . 5 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (𝑅‘((𝑆𝑥) − (𝑇𝑥))))
115lnopfi 31792 . . . . . . 7 𝑅: ℋ⟶ ℋ
1211, 1hocoi 31587 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑆)‘𝑥) = (𝑅‘(𝑆𝑥)))
1311, 3hocoi 31587 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
1412, 13oveq12d 7438 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)) = ((𝑅‘(𝑆𝑥)) − (𝑅‘(𝑇𝑥))))
157, 10, 143eqtr4d 2778 . . . 4 (𝑥 ∈ ℋ → (𝑅‘((𝑆op 𝑇)‘𝑥)) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
161, 3hosubcli 31592 . . . . 5 (𝑆op 𝑇): ℋ⟶ ℋ
1711, 16hocoi 31587 . . . 4 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (𝑅‘((𝑆op 𝑇)‘𝑥)))
1811, 1hocofi 31589 . . . . 5 (𝑅𝑆): ℋ⟶ ℋ
1911, 3hocofi 31589 . . . . 5 (𝑅𝑇): ℋ⟶ ℋ
20 hodval 31565 . . . . 5 (((𝑅𝑆): ℋ⟶ ℋ ∧ (𝑅𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2118, 19, 20mp3an12 1448 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) = (((𝑅𝑆)‘𝑥) − ((𝑅𝑇)‘𝑥)))
2215, 17, 213eqtr4d 2778 . . 3 (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥))
2322rgen 3060 . 2 𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥)
2411, 16hocofi 31589 . . 3 (𝑅 ∘ (𝑆op 𝑇)): ℋ⟶ ℋ
2518, 19hosubcli 31592 . . 3 ((𝑅𝑆) −op (𝑅𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31584 . 2 (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆op 𝑇))‘𝑥) = (((𝑅𝑆) −op (𝑅𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇)))
2723, 26mpbi 229 1 (𝑅 ∘ (𝑆op 𝑇)) = ((𝑅𝑆) −op (𝑅𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wral 3058  ccom 5682  wf 6544  cfv 6548  (class class class)co 7420  chba 30742   cmv 30748  op chod 30763  LinOpclo 30770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-hilex 30822  ax-hfvadd 30823  ax-hvass 30825  ax-hv0cl 30826  ax-hvaddid 30827  ax-hfvmul 30828  ax-hvmulid 30829  ax-hvdistr2 30832  ax-hvmul0 30833
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478  df-hvsub 30794  df-hodif 31555  df-lnop 31664
This theorem is referenced by:  hoddi  31813  unierri  31927
  Copyright terms: Public domain W3C validator