![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hoddii | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31603 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoddi.1 | ⊢ 𝑅 ∈ LinOp |
hoddi.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hoddi.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hoddii | ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoddi.2 | . . . . . . 7 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | 1 | ffvelcdmi 7093 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
3 | hoddi.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
4 | 3 | ffvelcdmi 7093 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
5 | hoddi.1 | . . . . . . 7 ⊢ 𝑅 ∈ LinOp | |
6 | 5 | lnopsubi 31797 | . . . . . 6 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
7 | 2, 4, 6 | syl2anc 583 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
8 | hodval 31565 | . . . . . . 7 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
9 | 1, 3, 8 | mp3an12 1448 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
10 | 9 | fveq2d 6901 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (𝑅‘((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
11 | 5 | lnopfi 31792 | . . . . . . 7 ⊢ 𝑅: ℋ⟶ ℋ |
12 | 11, 1 | hocoi 31587 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑆)‘𝑥) = (𝑅‘(𝑆‘𝑥))) |
13 | 11, 3 | hocoi 31587 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
14 | 12, 13 | oveq12d 7438 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑆‘𝑥)) −ℎ (𝑅‘(𝑇‘𝑥)))) |
15 | 7, 10, 14 | 3eqtr4d 2778 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑅‘((𝑆 −op 𝑇)‘𝑥)) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
16 | 1, 3 | hosubcli 31592 | . . . . 5 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
17 | 11, 16 | hocoi 31587 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (𝑅‘((𝑆 −op 𝑇)‘𝑥))) |
18 | 11, 1 | hocofi 31589 | . . . . 5 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
19 | 11, 3 | hocofi 31589 | . . . . 5 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
20 | hodval 31565 | . . . . 5 ⊢ (((𝑅 ∘ 𝑆): ℋ⟶ ℋ ∧ (𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) | |
21 | 18, 19, 20 | mp3an12 1448 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆)‘𝑥) −ℎ ((𝑅 ∘ 𝑇)‘𝑥))) |
22 | 15, 17, 21 | 3eqtr4d 2778 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥)) |
23 | 22 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) |
24 | 11, 16 | hocofi 31589 | . . 3 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)): ℋ⟶ ℋ |
25 | 18, 19 | hosubcli 31592 | . . 3 ⊢ ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)): ℋ⟶ ℋ |
26 | 24, 25 | hoeqi 31584 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 ∘ (𝑆 −op 𝑇))‘𝑥) = (((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))‘𝑥) ↔ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) |
27 | 23, 26 | mpbi 229 | 1 ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∘ ccom 5682 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℋchba 30742 −ℎ cmv 30748 −op chod 30763 LinOpclo 30770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-hilex 30822 ax-hfvadd 30823 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvdistr2 30832 ax-hvmul0 30833 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-neg 11478 df-hvsub 30794 df-hodif 31555 df-lnop 31664 |
This theorem is referenced by: hoddi 31813 unierri 31927 |
Copyright terms: Public domain | W3C validator |