HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocadddiri Structured version   Visualization version   GIF version

Theorem hocadddiri 31761
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocadddiri ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))

Proof of Theorem hocadddiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hoaddcli 31750 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 31746 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 31748 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 31748 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hosval 31722 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
104ffvelcdmi 7022 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hosval 31722 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1453 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
141, 4hocoi 31746 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 31746 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7370 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2771 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2771 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2771 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥))
2019rgen 3050 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥)
213, 4hocofi 31748 . . 3 ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hoaddcli 31750 . . 3 ((𝑅𝑇) +op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 31743 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇)))
2420, 23mpbi 230 1 ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wral 3048  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  chba 30901   + cva 30902   +op chos 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-hilex 30981  ax-hfvadd 30982
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-hosum 31712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator