![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hocadddiri | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocadddiri | ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hoaddcli 30752 | . . . . 5 ⊢ (𝑅 +op 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 30748 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
6 | 1, 4 | hocofi 30750 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
7 | 2, 4 | hocofi 30750 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
8 | hosval 30724 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
9 | 6, 7, 8 | mp3an12 1452 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
10 | 4 | ffvelcdmi 7035 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
11 | hosval 30724 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) | |
12 | 1, 2, 11 | mp3an12 1452 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
14 | 1, 4 | hocoi 30748 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
15 | 2, 4 | hocoi 30748 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
16 | 14, 15 | oveq12d 7376 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
17 | 13, 16 | eqtr4d 2776 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
18 | 9, 17 | eqtr4d 2776 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
19 | 5, 18 | eqtr4d 2776 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥)) |
20 | 19 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) |
21 | 3, 4 | hocofi 30750 | . . 3 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
22 | 6, 7 | hoaddcli 30752 | . . 3 ⊢ ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 30745 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))) |
24 | 20, 23 | mpbi 229 | 1 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∘ ccom 5638 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 ℋchba 29903 +ℎ cva 29904 +op chos 29922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-hilex 29983 ax-hfvadd 29984 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-map 8770 df-hosum 30714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |