Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hocadddiri | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocadddiri | ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hoaddcli 30130 | . . . . 5 ⊢ (𝑅 +op 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 30126 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
6 | 1, 4 | hocofi 30128 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
7 | 2, 4 | hocofi 30128 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
8 | hosval 30102 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
9 | 6, 7, 8 | mp3an12 1450 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
10 | 4 | ffvelrni 6960 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
11 | hosval 30102 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) | |
12 | 1, 2, 11 | mp3an12 1450 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
14 | 1, 4 | hocoi 30126 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
15 | 2, 4 | hocoi 30126 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
16 | 14, 15 | oveq12d 7293 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
17 | 13, 16 | eqtr4d 2781 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
18 | 9, 17 | eqtr4d 2781 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
19 | 5, 18 | eqtr4d 2781 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥)) |
20 | 19 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) |
21 | 3, 4 | hocofi 30128 | . . 3 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
22 | 6, 7 | hoaddcli 30130 | . . 3 ⊢ ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 30123 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))) |
24 | 20, 23 | mpbi 229 | 1 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℋchba 29281 +ℎ cva 29282 +op chos 29300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-hilex 29361 ax-hfvadd 29362 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-hosum 30092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |