HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocadddiri Structured version   Visualization version   GIF version

Theorem hocadddiri 31754
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocadddiri ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))

Proof of Theorem hocadddiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hoaddcli 31743 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 31739 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 31741 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 31741 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hosval 31715 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
104ffvelcdmi 7016 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hosval 31715 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1453 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
141, 4hocoi 31739 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 31739 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7364 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2769 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2769 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2769 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥))
2019rgen 3049 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥)
213, 4hocofi 31741 . . 3 ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hoaddcli 31743 . . 3 ((𝑅𝑇) +op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 31736 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇)))
2420, 23mpbi 230 1 ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  chba 30894   + cva 30895   +op chos 30913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-hilex 30974  ax-hfvadd 30975
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-hosum 31705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator