HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocadddiri Structured version   Visualization version   GIF version

Theorem hocadddiri 31019
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocadddiri ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))

Proof of Theorem hocadddiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hoaddcli 31008 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 31004 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 31006 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 31006 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hosval 30980 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1451 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
104ffvelcdmi 7082 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hosval 30980 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1451 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
141, 4hocoi 31004 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 31004 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7423 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) + (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2775 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) + ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2775 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2775 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥))
2019rgen 3063 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥)
213, 4hocofi 31006 . . 3 ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hoaddcli 31008 . . 3 ((𝑅𝑇) +op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 31001 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) +op (𝑆𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇)))
2420, 23mpbi 229 1 ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅𝑇) +op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wral 3061  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  chba 30159   + cva 30160   +op chos 30178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-hilex 30239  ax-hfvadd 30240
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-hosum 30970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator