| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocadddiri | Structured version Visualization version GIF version | ||
| Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocadddiri | ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcli 31697 | . . . . 5 ⊢ (𝑅 +op 𝑆): ℋ⟶ ℋ |
| 4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
| 5 | 3, 4 | hocoi 31693 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
| 6 | 1, 4 | hocofi 31695 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
| 7 | 2, 4 | hocofi 31695 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| 8 | hosval 31669 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
| 9 | 6, 7, 8 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 10 | 4 | ffvelcdmi 7055 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 11 | hosval 31669 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) | |
| 12 | 1, 2, 11 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
| 13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
| 14 | 1, 4 | hocoi 31693 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
| 15 | 2, 4 | hocoi 31693 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 16 | 14, 15 | oveq12d 7405 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) +ℎ (𝑆‘(𝑇‘𝑥)))) |
| 17 | 13, 16 | eqtr4d 2767 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) +ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 18 | 9, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 +op 𝑆)‘(𝑇‘𝑥))) |
| 19 | 5, 18 | eqtr4d 2767 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥)) |
| 20 | 19 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) |
| 21 | 3, 4 | hocofi 31695 | . . 3 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
| 22 | 6, 7 | hoaddcli 31697 | . . 3 ⊢ ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
| 23 | 21, 22 | hoeqi 31690 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇))) |
| 24 | 20, 23 | mpbi 230 | 1 ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 +ℎ cva 30849 +op chos 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-hilex 30928 ax-hfvadd 30929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-hosum 31659 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |