![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjsdii | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjsdi.1 | ⊢ 𝐻 ∈ Cℋ |
pjsdi.2 | ⊢ 𝑆: ℋ⟶ ℋ |
pjsdi.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
pjsdii | ⊢ ((projℎ‘𝐻) ∘ (𝑆 +op 𝑇)) = (((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjsdi.2 | . . . . . . 7 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | 1 | ffvelrni 6606 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
3 | pjsdi.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
4 | 3 | ffvelrni 6606 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
5 | pjsdi.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
6 | 5 | pjaddi 29099 | . . . . . 6 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((projℎ‘𝐻)‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) = (((projℎ‘𝐻)‘(𝑆‘𝑥)) +ℎ ((projℎ‘𝐻)‘(𝑇‘𝑥)))) |
7 | 2, 4, 6 | syl2anc 581 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐻)‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) = (((projℎ‘𝐻)‘(𝑆‘𝑥)) +ℎ ((projℎ‘𝐻)‘(𝑇‘𝑥)))) |
8 | hosval 29153 | . . . . . . 7 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
9 | 1, 3, 8 | mp3an12 1581 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
10 | 9 | fveq2d 6436 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐻)‘((𝑆 +op 𝑇)‘𝑥)) = ((projℎ‘𝐻)‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
11 | 5 | pjfi 29117 | . . . . . . 7 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
12 | 11, 1 | hocoi 29177 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ 𝑆)‘𝑥) = ((projℎ‘𝐻)‘(𝑆‘𝑥))) |
13 | 11, 3 | hocoi 29177 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ 𝑇)‘𝑥) = ((projℎ‘𝐻)‘(𝑇‘𝑥))) |
14 | 12, 13 | oveq12d 6922 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻) ∘ 𝑆)‘𝑥) +ℎ (((projℎ‘𝐻) ∘ 𝑇)‘𝑥)) = (((projℎ‘𝐻)‘(𝑆‘𝑥)) +ℎ ((projℎ‘𝐻)‘(𝑇‘𝑥)))) |
15 | 7, 10, 14 | 3eqtr4d 2870 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐻)‘((𝑆 +op 𝑇)‘𝑥)) = ((((projℎ‘𝐻) ∘ 𝑆)‘𝑥) +ℎ (((projℎ‘𝐻) ∘ 𝑇)‘𝑥))) |
16 | 1, 3 | hoaddcli 29181 | . . . . 5 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
17 | 11, 16 | hocoi 29177 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (𝑆 +op 𝑇))‘𝑥) = ((projℎ‘𝐻)‘((𝑆 +op 𝑇)‘𝑥))) |
18 | 11, 1 | hocofi 29179 | . . . . 5 ⊢ ((projℎ‘𝐻) ∘ 𝑆): ℋ⟶ ℋ |
19 | 11, 3 | hocofi 29179 | . . . . 5 ⊢ ((projℎ‘𝐻) ∘ 𝑇): ℋ⟶ ℋ |
20 | hosval 29153 | . . . . 5 ⊢ ((((projℎ‘𝐻) ∘ 𝑆): ℋ⟶ ℋ ∧ ((projℎ‘𝐻) ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))‘𝑥) = ((((projℎ‘𝐻) ∘ 𝑆)‘𝑥) +ℎ (((projℎ‘𝐻) ∘ 𝑇)‘𝑥))) | |
21 | 18, 19, 20 | mp3an12 1581 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))‘𝑥) = ((((projℎ‘𝐻) ∘ 𝑆)‘𝑥) +ℎ (((projℎ‘𝐻) ∘ 𝑇)‘𝑥))) |
22 | 15, 17, 21 | 3eqtr4d 2870 | . . 3 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (𝑆 +op 𝑇))‘𝑥) = ((((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))‘𝑥)) |
23 | 22 | rgen 3130 | . 2 ⊢ ∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (𝑆 +op 𝑇))‘𝑥) = ((((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))‘𝑥) |
24 | 11, 16 | hocofi 29179 | . . 3 ⊢ ((projℎ‘𝐻) ∘ (𝑆 +op 𝑇)): ℋ⟶ ℋ |
25 | 18, 19 | hoaddcli 29181 | . . 3 ⊢ (((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇)): ℋ⟶ ℋ |
26 | 24, 25 | hoeqi 29174 | . 2 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (𝑆 +op 𝑇))‘𝑥) = ((((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))‘𝑥) ↔ ((projℎ‘𝐻) ∘ (𝑆 +op 𝑇)) = (((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇))) |
27 | 23, 26 | mpbi 222 | 1 ⊢ ((projℎ‘𝐻) ∘ (𝑆 +op 𝑇)) = (((projℎ‘𝐻) ∘ 𝑆) +op ((projℎ‘𝐻) ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 ∀wral 3116 ∘ ccom 5345 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 ℋchba 28330 +ℎ cva 28331 Cℋ cch 28340 projℎcpjh 28348 +op chos 28349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cc 9571 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 ax-addf 10330 ax-mulf 10331 ax-hilex 28410 ax-hfvadd 28411 ax-hvcom 28412 ax-hvass 28413 ax-hv0cl 28414 ax-hvaddid 28415 ax-hfvmul 28416 ax-hvmulid 28417 ax-hvmulass 28418 ax-hvdistr1 28419 ax-hvdistr2 28420 ax-hvmul0 28421 ax-hfi 28490 ax-his1 28493 ax-his2 28494 ax-his3 28495 ax-his4 28496 ax-hcompl 28613 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-iin 4742 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-se 5301 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-isom 6131 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-of 7156 df-om 7326 df-1st 7427 df-2nd 7428 df-supp 7559 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-2o 7826 df-oadd 7829 df-omul 7830 df-er 8008 df-map 8123 df-pm 8124 df-ixp 8175 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-fsupp 8544 df-fi 8585 df-sup 8616 df-inf 8617 df-oi 8683 df-card 9077 df-acn 9080 df-cda 9304 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-dec 11821 df-uz 11968 df-q 12071 df-rp 12112 df-xneg 12231 df-xadd 12232 df-xmul 12233 df-ioo 12466 df-ico 12468 df-icc 12469 df-fz 12619 df-fzo 12760 df-fl 12887 df-seq 13095 df-exp 13154 df-hash 13410 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-clim 14595 df-rlim 14596 df-sum 14793 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-starv 16319 df-sca 16320 df-vsca 16321 df-ip 16322 df-tset 16323 df-ple 16324 df-ds 16326 df-unif 16327 df-hom 16328 df-cco 16329 df-rest 16435 df-topn 16436 df-0g 16454 df-gsum 16455 df-topgen 16456 df-pt 16457 df-prds 16460 df-xrs 16514 df-qtop 16519 df-imas 16520 df-xps 16522 df-mre 16598 df-mrc 16599 df-acs 16601 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-submnd 17688 df-mulg 17894 df-cntz 18099 df-cmn 18547 df-psmet 20097 df-xmet 20098 df-met 20099 df-bl 20100 df-mopn 20101 df-fbas 20102 df-fg 20103 df-cnfld 20106 df-top 21068 df-topon 21085 df-topsp 21107 df-bases 21120 df-cld 21193 df-ntr 21194 df-cls 21195 df-nei 21272 df-cn 21401 df-cnp 21402 df-lm 21403 df-haus 21489 df-tx 21735 df-hmeo 21928 df-fil 22019 df-fm 22111 df-flim 22112 df-flf 22113 df-xms 22494 df-ms 22495 df-tms 22496 df-cfil 23422 df-cau 23423 df-cmet 23424 df-grpo 27902 df-gid 27903 df-ginv 27904 df-gdiv 27905 df-ablo 27954 df-vc 27968 df-nv 28001 df-va 28004 df-ba 28005 df-sm 28006 df-0v 28007 df-vs 28008 df-nmcv 28009 df-ims 28010 df-dip 28110 df-ssp 28131 df-ph 28222 df-cbn 28273 df-hnorm 28379 df-hba 28380 df-hvsub 28382 df-hlim 28383 df-hcau 28384 df-sh 28618 df-ch 28632 df-oc 28663 df-ch0 28664 df-shs 28721 df-pjh 28808 df-hosum 29143 |
This theorem is referenced by: pjsdi2i 29570 pjclem1 29608 pjci 29613 |
Copyright terms: Public domain | W3C validator |