| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjcoi | Structured version Visualization version GIF version | ||
| Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
| nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| adjcoi | ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoptri.2 | . . . . . . . 8 ⊢ 𝑇 ∈ BndLinOp | |
| 2 | adjbdln 32102 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
| 3 | bdopf 31881 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) ∈ BndLinOp → (adjℎ‘𝑇): ℋ⟶ ℋ) | |
| 4 | 1, 2, 3 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑇): ℋ⟶ ℋ |
| 5 | nmoptri.1 | . . . . . . . 8 ⊢ 𝑆 ∈ BndLinOp | |
| 6 | adjbdln 32102 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → (adjℎ‘𝑆) ∈ BndLinOp) | |
| 7 | bdopf 31881 | . . . . . . . 8 ⊢ ((adjℎ‘𝑆) ∈ BndLinOp → (adjℎ‘𝑆): ℋ⟶ ℋ) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑆): ℋ⟶ ℋ |
| 9 | 4, 8 | hocoi 31783 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦) = ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦))) |
| 10 | 9 | oveq2d 7447 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 12 | bdopf 31881 | . . . . . . . . 9 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
| 13 | 5, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑆: ℋ⟶ ℋ |
| 14 | bdopf 31881 | . . . . . . . . 9 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
| 15 | 1, 14 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑇: ℋ⟶ ℋ |
| 16 | 13, 15 | hocoi 31783 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 17 | 16 | oveq1d 7446 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
| 19 | 15 | ffvelcdmi 7103 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 20 | bdopadj 32101 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ) | |
| 21 | 5, 20 | ax-mp 5 | . . . . . . 7 ⊢ 𝑆 ∈ dom adjℎ |
| 22 | adj2 31953 | . . . . . . 7 ⊢ ((𝑆 ∈ dom adjℎ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) | |
| 23 | 21, 22 | mp3an1 1450 | . . . . . 6 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
| 24 | 19, 23 | sylan 580 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
| 25 | 8 | ffvelcdmi 7103 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
| 26 | bdopadj 32101 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
| 27 | 1, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑇 ∈ dom adjℎ |
| 28 | adj2 31953 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) | |
| 29 | 27, 28 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 30 | 25, 29 | sylan2 593 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 31 | 18, 24, 30 | 3eqtrd 2781 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 32 | 5, 1 | bdopcoi 32117 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp |
| 33 | bdopadj 32101 | . . . . . 6 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (𝑆 ∘ 𝑇) ∈ dom adjℎ) | |
| 34 | 32, 33 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 𝑇) ∈ dom adjℎ |
| 35 | adj2 31953 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) | |
| 36 | 34, 35 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) |
| 37 | 11, 31, 36 | 3eqtr2rd 2784 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦))) |
| 38 | 37 | rgen2 3199 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) |
| 39 | adjbdln 32102 | . . . 4 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp) | |
| 40 | bdopf 31881 | . . . 4 ⊢ ((adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ) | |
| 41 | 32, 39, 40 | mp2b 10 | . . 3 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
| 42 | 4, 8 | hocofi 31785 | . . 3 ⊢ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ |
| 43 | hoeq2 31850 | . . 3 ⊢ (((adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ ∧ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)))) | |
| 44 | 41, 42, 43 | mp2an 692 | . 2 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))) |
| 45 | 38, 44 | mpbi 230 | 1 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 dom cdm 5685 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℋchba 30938 ·ih csp 30941 BndLinOpcbo 30967 adjℎcado 30974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 ax-hcompl 31221 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-cn 23235 df-cnp 23236 df-lm 23237 df-t1 23322 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cfil 25289 df-cau 25290 df-cmet 25291 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-dip 30720 df-ssp 30741 df-lno 30763 df-nmoo 30764 df-0o 30766 df-ph 30832 df-cbn 30882 df-hnorm 30987 df-hba 30988 df-hvsub 30990 df-hlim 30991 df-hcau 30992 df-sh 31226 df-ch 31240 df-oc 31271 df-ch0 31272 df-shs 31327 df-pjh 31414 df-h0op 31767 df-nmop 31858 df-cnop 31859 df-lnop 31860 df-bdop 31861 df-unop 31862 df-hmop 31863 df-nmfn 31864 df-nlfn 31865 df-cnfn 31866 df-lnfn 31867 df-adjh 31868 |
| This theorem is referenced by: pjcmul1i 32220 |
| Copyright terms: Public domain | W3C validator |