![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjcoi | Structured version Visualization version GIF version |
Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
adjcoi | ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.2 | . . . . . . . 8 ⊢ 𝑇 ∈ BndLinOp | |
2 | adjbdln 32115 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
3 | bdopf 31894 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) ∈ BndLinOp → (adjℎ‘𝑇): ℋ⟶ ℋ) | |
4 | 1, 2, 3 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑇): ℋ⟶ ℋ |
5 | nmoptri.1 | . . . . . . . 8 ⊢ 𝑆 ∈ BndLinOp | |
6 | adjbdln 32115 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → (adjℎ‘𝑆) ∈ BndLinOp) | |
7 | bdopf 31894 | . . . . . . . 8 ⊢ ((adjℎ‘𝑆) ∈ BndLinOp → (adjℎ‘𝑆): ℋ⟶ ℋ) | |
8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑆): ℋ⟶ ℋ |
9 | 4, 8 | hocoi 31796 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦) = ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦))) |
10 | 9 | oveq2d 7464 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
12 | bdopf 31894 | . . . . . . . . 9 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
13 | 5, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑆: ℋ⟶ ℋ |
14 | bdopf 31894 | . . . . . . . . 9 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
15 | 1, 14 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑇: ℋ⟶ ℋ |
16 | 13, 15 | hocoi 31796 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
17 | 16 | oveq1d 7463 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
19 | 15 | ffvelcdmi 7117 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
20 | bdopadj 32114 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ) | |
21 | 5, 20 | ax-mp 5 | . . . . . . 7 ⊢ 𝑆 ∈ dom adjℎ |
22 | adj2 31966 | . . . . . . 7 ⊢ ((𝑆 ∈ dom adjℎ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) | |
23 | 21, 22 | mp3an1 1448 | . . . . . 6 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
24 | 19, 23 | sylan 579 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
25 | 8 | ffvelcdmi 7117 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
26 | bdopadj 32114 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
27 | 1, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑇 ∈ dom adjℎ |
28 | adj2 31966 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) | |
29 | 27, 28 | mp3an1 1448 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
30 | 25, 29 | sylan2 592 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
31 | 18, 24, 30 | 3eqtrd 2784 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
32 | 5, 1 | bdopcoi 32130 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp |
33 | bdopadj 32114 | . . . . . 6 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (𝑆 ∘ 𝑇) ∈ dom adjℎ) | |
34 | 32, 33 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 𝑇) ∈ dom adjℎ |
35 | adj2 31966 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) | |
36 | 34, 35 | mp3an1 1448 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) |
37 | 11, 31, 36 | 3eqtr2rd 2787 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦))) |
38 | 37 | rgen2 3205 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) |
39 | adjbdln 32115 | . . . 4 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp) | |
40 | bdopf 31894 | . . . 4 ⊢ ((adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ) | |
41 | 32, 39, 40 | mp2b 10 | . . 3 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
42 | 4, 8 | hocofi 31798 | . . 3 ⊢ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ |
43 | hoeq2 31863 | . . 3 ⊢ (((adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ ∧ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)))) | |
44 | 41, 42, 43 | mp2an 691 | . 2 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))) |
45 | 38, 44 | mpbi 230 | 1 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 dom cdm 5700 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℋchba 30951 ·ih csp 30954 BndLinOpcbo 30980 adjℎcado 30987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-lm 23258 df-t1 23343 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ssp 30754 df-lno 30776 df-nmoo 30777 df-0o 30779 df-ph 30845 df-cbn 30895 df-hnorm 31000 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 df-shs 31340 df-pjh 31427 df-h0op 31780 df-nmop 31871 df-cnop 31872 df-lnop 31873 df-bdop 31874 df-unop 31875 df-hmop 31876 df-nmfn 31877 df-nlfn 31878 df-cnfn 31879 df-lnfn 31880 df-adjh 31881 |
This theorem is referenced by: pjcmul1i 32233 |
Copyright terms: Public domain | W3C validator |