HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjcoi Structured version   Visualization version   GIF version

Theorem adjcoi 32063
Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
adjcoi (adj‘(𝑆𝑇)) = ((adj𝑇) ∘ (adj𝑆))

Proof of Theorem adjcoi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoptri.2 . . . . . . . 8 𝑇 ∈ BndLinOp
2 adjbdln 32046 . . . . . . . 8 (𝑇 ∈ BndLinOp → (adj𝑇) ∈ BndLinOp)
3 bdopf 31825 . . . . . . . 8 ((adj𝑇) ∈ BndLinOp → (adj𝑇): ℋ⟶ ℋ)
41, 2, 3mp2b 10 . . . . . . 7 (adj𝑇): ℋ⟶ ℋ
5 nmoptri.1 . . . . . . . 8 𝑆 ∈ BndLinOp
6 adjbdln 32046 . . . . . . . 8 (𝑆 ∈ BndLinOp → (adj𝑆) ∈ BndLinOp)
7 bdopf 31825 . . . . . . . 8 ((adj𝑆) ∈ BndLinOp → (adj𝑆): ℋ⟶ ℋ)
85, 6, 7mp2b 10 . . . . . . 7 (adj𝑆): ℋ⟶ ℋ
94, 8hocoi 31727 . . . . . 6 (𝑦 ∈ ℋ → (((adj𝑇) ∘ (adj𝑆))‘𝑦) = ((adj𝑇)‘((adj𝑆)‘𝑦)))
109oveq2d 7369 . . . . 5 (𝑦 ∈ ℋ → (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦)) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
1110adantl 481 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦)) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
12 bdopf 31825 . . . . . . . . 9 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
135, 12ax-mp 5 . . . . . . . 8 𝑆: ℋ⟶ ℋ
14 bdopf 31825 . . . . . . . . 9 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
151, 14ax-mp 5 . . . . . . . 8 𝑇: ℋ⟶ ℋ
1613, 15hocoi 31727 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1716oveq1d 7368 . . . . . 6 (𝑥 ∈ ℋ → (((𝑆𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇𝑥)) ·ih 𝑦))
1817adantr 480 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇𝑥)) ·ih 𝑦))
1915ffvelcdmi 7021 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
20 bdopadj 32045 . . . . . . . 8 (𝑆 ∈ BndLinOp → 𝑆 ∈ dom adj)
215, 20ax-mp 5 . . . . . . 7 𝑆 ∈ dom adj
22 adj2 31897 . . . . . . 7 ((𝑆 ∈ dom adj ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih 𝑦) = ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)))
2321, 22mp3an1 1450 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih 𝑦) = ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)))
2419, 23sylan 580 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih 𝑦) = ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)))
258ffvelcdmi 7021 . . . . . 6 (𝑦 ∈ ℋ → ((adj𝑆)‘𝑦) ∈ ℋ)
26 bdopadj 32045 . . . . . . . 8 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
271, 26ax-mp 5 . . . . . . 7 𝑇 ∈ dom adj
28 adj2 31897 . . . . . . 7 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ ((adj𝑆)‘𝑦) ∈ ℋ) → ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
2927, 28mp3an1 1450 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((adj𝑆)‘𝑦) ∈ ℋ) → ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
3025, 29sylan2 593 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih ((adj𝑆)‘𝑦)) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
3118, 24, 303eqtrd 2768 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘((adj𝑆)‘𝑦))))
325, 1bdopcoi 32061 . . . . . 6 (𝑆𝑇) ∈ BndLinOp
33 bdopadj 32045 . . . . . 6 ((𝑆𝑇) ∈ BndLinOp → (𝑆𝑇) ∈ dom adj)
3432, 33ax-mp 5 . . . . 5 (𝑆𝑇) ∈ dom adj
35 adj2 31897 . . . . 5 (((𝑆𝑇) ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)))
3634, 35mp3an1 1450 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)))
3711, 31, 363eqtr2rd 2771 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦)))
3837rgen2 3169 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦))
39 adjbdln 32046 . . . 4 ((𝑆𝑇) ∈ BndLinOp → (adj‘(𝑆𝑇)) ∈ BndLinOp)
40 bdopf 31825 . . . 4 ((adj‘(𝑆𝑇)) ∈ BndLinOp → (adj‘(𝑆𝑇)): ℋ⟶ ℋ)
4132, 39, 40mp2b 10 . . 3 (adj‘(𝑆𝑇)): ℋ⟶ ℋ
424, 8hocofi 31729 . . 3 ((adj𝑇) ∘ (adj𝑆)): ℋ⟶ ℋ
43 hoeq2 31794 . . 3 (((adj‘(𝑆𝑇)): ℋ⟶ ℋ ∧ ((adj𝑇) ∘ (adj𝑆)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦)) ↔ (adj‘(𝑆𝑇)) = ((adj𝑇) ∘ (adj𝑆))))
4441, 42, 43mp2an 692 . 2 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adj‘(𝑆𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑇) ∘ (adj𝑆))‘𝑦)) ↔ (adj‘(𝑆𝑇)) = ((adj𝑇) ∘ (adj𝑆)))
4538, 44mpbi 230 1 (adj‘(𝑆𝑇)) = ((adj𝑇) ∘ (adj𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  dom cdm 5623  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  chba 30882   ·ih csp 30885  BndLinOpcbo 30911  adjcado 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30962  ax-hfvadd 30963  ax-hvcom 30964  ax-hvass 30965  ax-hv0cl 30966  ax-hvaddid 30967  ax-hfvmul 30968  ax-hvmulid 30969  ax-hvmulass 30970  ax-hvdistr1 30971  ax-hvdistr2 30972  ax-hvmul0 30973  ax-hfi 31042  ax-his1 31045  ax-his2 31046  ax-his3 31047  ax-his4 31048  ax-hcompl 31165
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-cn 23131  df-cnp 23132  df-lm 23133  df-t1 23218  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cfil 25172  df-cau 25173  df-cmet 25174  df-grpo 30456  df-gid 30457  df-ginv 30458  df-gdiv 30459  df-ablo 30508  df-vc 30522  df-nv 30555  df-va 30558  df-ba 30559  df-sm 30560  df-0v 30561  df-vs 30562  df-nmcv 30563  df-ims 30564  df-dip 30664  df-ssp 30685  df-lno 30707  df-nmoo 30708  df-0o 30710  df-ph 30776  df-cbn 30826  df-hnorm 30931  df-hba 30932  df-hvsub 30934  df-hlim 30935  df-hcau 30936  df-sh 31170  df-ch 31184  df-oc 31215  df-ch0 31216  df-shs 31271  df-pjh 31358  df-h0op 31711  df-nmop 31802  df-cnop 31803  df-lnop 31804  df-bdop 31805  df-unop 31806  df-hmop 31807  df-nmfn 31808  df-nlfn 31809  df-cnfn 31810  df-lnfn 31811  df-adjh 31812
This theorem is referenced by:  pjcmul1i  32164
  Copyright terms: Public domain W3C validator