| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjcoi | Structured version Visualization version GIF version | ||
| Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
| nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| adjcoi | ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoptri.2 | . . . . . . . 8 ⊢ 𝑇 ∈ BndLinOp | |
| 2 | adjbdln 32010 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
| 3 | bdopf 31789 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) ∈ BndLinOp → (adjℎ‘𝑇): ℋ⟶ ℋ) | |
| 4 | 1, 2, 3 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑇): ℋ⟶ ℋ |
| 5 | nmoptri.1 | . . . . . . . 8 ⊢ 𝑆 ∈ BndLinOp | |
| 6 | adjbdln 32010 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → (adjℎ‘𝑆) ∈ BndLinOp) | |
| 7 | bdopf 31789 | . . . . . . . 8 ⊢ ((adjℎ‘𝑆) ∈ BndLinOp → (adjℎ‘𝑆): ℋ⟶ ℋ) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑆): ℋ⟶ ℋ |
| 9 | 4, 8 | hocoi 31691 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦) = ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦))) |
| 10 | 9 | oveq2d 7419 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 12 | bdopf 31789 | . . . . . . . . 9 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
| 13 | 5, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑆: ℋ⟶ ℋ |
| 14 | bdopf 31789 | . . . . . . . . 9 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
| 15 | 1, 14 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑇: ℋ⟶ ℋ |
| 16 | 13, 15 | hocoi 31691 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 17 | 16 | oveq1d 7418 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
| 19 | 15 | ffvelcdmi 7072 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 20 | bdopadj 32009 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ) | |
| 21 | 5, 20 | ax-mp 5 | . . . . . . 7 ⊢ 𝑆 ∈ dom adjℎ |
| 22 | adj2 31861 | . . . . . . 7 ⊢ ((𝑆 ∈ dom adjℎ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) | |
| 23 | 21, 22 | mp3an1 1450 | . . . . . 6 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
| 24 | 19, 23 | sylan 580 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
| 25 | 8 | ffvelcdmi 7072 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
| 26 | bdopadj 32009 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
| 27 | 1, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑇 ∈ dom adjℎ |
| 28 | adj2 31861 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) | |
| 29 | 27, 28 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 30 | 25, 29 | sylan2 593 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 31 | 18, 24, 30 | 3eqtrd 2774 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
| 32 | 5, 1 | bdopcoi 32025 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp |
| 33 | bdopadj 32009 | . . . . . 6 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (𝑆 ∘ 𝑇) ∈ dom adjℎ) | |
| 34 | 32, 33 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 𝑇) ∈ dom adjℎ |
| 35 | adj2 31861 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) | |
| 36 | 34, 35 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) |
| 37 | 11, 31, 36 | 3eqtr2rd 2777 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦))) |
| 38 | 37 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) |
| 39 | adjbdln 32010 | . . . 4 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp) | |
| 40 | bdopf 31789 | . . . 4 ⊢ ((adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ) | |
| 41 | 32, 39, 40 | mp2b 10 | . . 3 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
| 42 | 4, 8 | hocofi 31693 | . . 3 ⊢ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ |
| 43 | hoeq2 31758 | . . 3 ⊢ (((adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ ∧ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)))) | |
| 44 | 41, 42, 43 | mp2an 692 | . 2 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))) |
| 45 | 38, 44 | mpbi 230 | 1 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 dom cdm 5654 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℋchba 30846 ·ih csp 30849 BndLinOpcbo 30875 adjℎcado 30882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 ax-hcompl 31129 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-cn 23163 df-cnp 23164 df-lm 23165 df-t1 23250 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cfil 25205 df-cau 25206 df-cmet 25207 df-grpo 30420 df-gid 30421 df-ginv 30422 df-gdiv 30423 df-ablo 30472 df-vc 30486 df-nv 30519 df-va 30522 df-ba 30523 df-sm 30524 df-0v 30525 df-vs 30526 df-nmcv 30527 df-ims 30528 df-dip 30628 df-ssp 30649 df-lno 30671 df-nmoo 30672 df-0o 30674 df-ph 30740 df-cbn 30790 df-hnorm 30895 df-hba 30896 df-hvsub 30898 df-hlim 30899 df-hcau 30900 df-sh 31134 df-ch 31148 df-oc 31179 df-ch0 31180 df-shs 31235 df-pjh 31322 df-h0op 31675 df-nmop 31766 df-cnop 31767 df-lnop 31768 df-bdop 31769 df-unop 31770 df-hmop 31771 df-nmfn 31772 df-nlfn 31773 df-cnfn 31774 df-lnfn 31775 df-adjh 31776 |
| This theorem is referenced by: pjcmul1i 32128 |
| Copyright terms: Public domain | W3C validator |