![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjcoi | Structured version Visualization version GIF version |
Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
adjcoi | ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.2 | . . . . . . . 8 ⊢ 𝑇 ∈ BndLinOp | |
2 | adjbdln 31892 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
3 | bdopf 31671 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) ∈ BndLinOp → (adjℎ‘𝑇): ℋ⟶ ℋ) | |
4 | 1, 2, 3 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑇): ℋ⟶ ℋ |
5 | nmoptri.1 | . . . . . . . 8 ⊢ 𝑆 ∈ BndLinOp | |
6 | adjbdln 31892 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → (adjℎ‘𝑆) ∈ BndLinOp) | |
7 | bdopf 31671 | . . . . . . . 8 ⊢ ((adjℎ‘𝑆) ∈ BndLinOp → (adjℎ‘𝑆): ℋ⟶ ℋ) | |
8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ (adjℎ‘𝑆): ℋ⟶ ℋ |
9 | 4, 8 | hocoi 31573 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦) = ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦))) |
10 | 9 | oveq2d 7436 | . . . . 5 ⊢ (𝑦 ∈ ℋ → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
12 | bdopf 31671 | . . . . . . . . 9 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
13 | 5, 12 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑆: ℋ⟶ ℋ |
14 | bdopf 31671 | . . . . . . . . 9 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
15 | 1, 14 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑇: ℋ⟶ ℋ |
16 | 13, 15 | hocoi 31573 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
17 | 16 | oveq1d 7435 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦)) |
19 | 15 | ffvelcdmi 7093 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
20 | bdopadj 31891 | . . . . . . . 8 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ) | |
21 | 5, 20 | ax-mp 5 | . . . . . . 7 ⊢ 𝑆 ∈ dom adjℎ |
22 | adj2 31743 | . . . . . . 7 ⊢ ((𝑆 ∈ dom adjℎ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) | |
23 | 21, 22 | mp3an1 1445 | . . . . . 6 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
24 | 19, 23 | sylan 579 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih 𝑦) = ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦))) |
25 | 8 | ffvelcdmi 7093 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
26 | bdopadj 31891 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
27 | 1, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑇 ∈ dom adjℎ |
28 | adj2 31743 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) | |
29 | 27, 28 | mp3an1 1445 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ ((adjℎ‘𝑆)‘𝑦) ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
30 | 25, 29 | sylan2 592 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih ((adjℎ‘𝑆)‘𝑦)) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
31 | 18, 24, 30 | 3eqtrd 2772 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘𝑇)‘((adjℎ‘𝑆)‘𝑦)))) |
32 | 5, 1 | bdopcoi 31907 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp |
33 | bdopadj 31891 | . . . . . 6 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (𝑆 ∘ 𝑇) ∈ dom adjℎ) | |
34 | 32, 33 | ax-mp 5 | . . . . 5 ⊢ (𝑆 ∘ 𝑇) ∈ dom adjℎ |
35 | adj2 31743 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) | |
36 | 34, 35 | mp3an1 1445 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦))) |
37 | 11, 31, 36 | 3eqtr2rd 2775 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦))) |
38 | 37 | rgen2 3194 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) |
39 | adjbdln 31892 | . . . 4 ⊢ ((𝑆 ∘ 𝑇) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp) | |
40 | bdopf 31671 | . . . 4 ⊢ ((adjℎ‘(𝑆 ∘ 𝑇)) ∈ BndLinOp → (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ) | |
41 | 32, 39, 40 | mp2b 10 | . . 3 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
42 | 4, 8 | hocofi 31575 | . . 3 ⊢ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ |
43 | hoeq2 31640 | . . 3 ⊢ (((adjℎ‘(𝑆 ∘ 𝑇)): ℋ⟶ ℋ ∧ ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)))) | |
44 | 41, 42, 43 | mp2an 691 | . 2 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((adjℎ‘(𝑆 ∘ 𝑇))‘𝑦)) = (𝑥 ·ih (((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))‘𝑦)) ↔ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆))) |
45 | 38, 44 | mpbi 229 | 1 ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 dom cdm 5678 ∘ ccom 5682 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℋchba 30728 ·ih csp 30731 BndLinOpcbo 30757 adjℎcado 30764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30808 ax-hfvadd 30809 ax-hvcom 30810 ax-hvass 30811 ax-hv0cl 30812 ax-hvaddid 30813 ax-hfvmul 30814 ax-hvmulid 30815 ax-hvmulass 30816 ax-hvdistr1 30817 ax-hvdistr2 30818 ax-hvmul0 30819 ax-hfi 30888 ax-his1 30891 ax-his2 30892 ax-his3 30893 ax-his4 30894 ax-hcompl 31011 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-rlim 15465 df-sum 15665 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-cn 23130 df-cnp 23131 df-lm 23132 df-t1 23217 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24225 df-ms 24226 df-tms 24227 df-cfil 25182 df-cau 25183 df-cmet 25184 df-grpo 30302 df-gid 30303 df-ginv 30304 df-gdiv 30305 df-ablo 30354 df-vc 30368 df-nv 30401 df-va 30404 df-ba 30405 df-sm 30406 df-0v 30407 df-vs 30408 df-nmcv 30409 df-ims 30410 df-dip 30510 df-ssp 30531 df-lno 30553 df-nmoo 30554 df-0o 30556 df-ph 30622 df-cbn 30672 df-hnorm 30777 df-hba 30778 df-hvsub 30780 df-hlim 30781 df-hcau 30782 df-sh 31016 df-ch 31030 df-oc 31061 df-ch0 31062 df-shs 31117 df-pjh 31204 df-h0op 31557 df-nmop 31648 df-cnop 31649 df-lnop 31650 df-bdop 31651 df-unop 31652 df-hmop 31653 df-nmfn 31654 df-nlfn 31655 df-cnfn 31656 df-lnfn 31657 df-adjh 31658 |
This theorem is referenced by: pjcmul1i 32010 |
Copyright terms: Public domain | W3C validator |