![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeqd | Structured version Visualization version GIF version |
Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqd.1 | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
homfeqd.2 | ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
Ref | Expression |
---|---|
homfeqd | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqd.2 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) | |
2 | 1 | oveqd 7465 | . . . 4 ⊢ (𝜑 → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
3 | 2 | ralrimivw 3156 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
4 | 3 | ralrimivw 3156 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
5 | eqid 2740 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | eqid 2740 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
7 | eqidd 2741 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
8 | homfeqd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | |
9 | 5, 6, 7, 8 | homfeq 17752 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))) |
10 | 4, 9 | mpbird 257 | 1 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Homf chomf 17724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-homf 17728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |