MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqd Structured version   Visualization version   GIF version

Theorem homfeqd 17656
Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homfeqd.1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
homfeqd.2 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
Assertion
Ref Expression
homfeqd (𝜑 → (Homf𝐶) = (Homf𝐷))

Proof of Theorem homfeqd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homfeqd.2 . . . . 5 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
21oveqd 7404 . . . 4 (𝜑 → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
32ralrimivw 3129 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
43ralrimivw 3129 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
5 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2729 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
7 eqidd 2730 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
8 homfeqd.1 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
95, 6, 7, 8homfeq 17655 . 2 (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
104, 9mpbird 257 1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Homf chomf 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-homf 17631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator