![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeqd | Structured version Visualization version GIF version |
Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqd.1 | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
homfeqd.2 | ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
Ref | Expression |
---|---|
homfeqd | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqd.2 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) | |
2 | 1 | oveqd 7428 | . . . 4 ⊢ (𝜑 → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
3 | 2 | ralrimivw 3148 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
4 | 3 | ralrimivw 3148 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
5 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
7 | eqidd 2731 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
8 | homfeqd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | |
9 | 5, 6, 7, 8 | homfeq 17642 | . 2 ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))) |
10 | 4, 9 | mpbird 256 | 1 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∀wral 3059 ‘cfv 6542 (class class class)co 7411 Basecbs 17148 Hom chom 17212 Homf chomf 17614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-homf 17618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |