MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqbas Structured version   Visualization version   GIF version

Theorem homfeqbas 17199
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
homfeqbas.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
homfeqbas (𝜑 → (Base‘𝐶) = (Base‘𝐷))

Proof of Theorem homfeqbas
StepHypRef Expression
1 homfeqbas.1 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
21dmeqd 5774 . . . 4 (𝜑 → dom (Homf𝐶) = dom (Homf𝐷))
3 eqid 2737 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
53, 4homffn 17196 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
65fndmi 6482 . . . 4 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
7 eqid 2737 . . . . . 6 (Homf𝐷) = (Homf𝐷)
8 eqid 2737 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
97, 8homffn 17196 . . . . 5 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
109fndmi 6482 . . . 4 dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷))
112, 6, 103eqtr3g 2801 . . 3 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
1211dmeqd 5774 . 2 (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷)))
13 dmxpid 5799 . 2 dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶)
14 dmxpid 5799 . 2 dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷)
1512, 13, 143eqtr3g 2801 1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543   × cxp 5549  dom cdm 5551  cfv 6380  Basecbs 16760  Homf chomf 17169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-homf 17173
This theorem is referenced by:  homfeqval  17200  comfeqd  17210  comfeqval  17211  catpropd  17212  cidpropd  17213  oppccomfpropd  17231  monpropd  17242  funcpropd  17407  fullpropd  17427  fthpropd  17428  natpropd  17485  fucpropd  17486  xpcpropd  17716  curfpropd  17741  hofpropd  17775
  Copyright terms: Public domain W3C validator