| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version | ||
| Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | dmeqd 5890 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
| 3 | eqid 2736 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 3, 4 | homffn 17710 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 6 | 5 | fndmi 6647 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | eqid 2736 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 8 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 7, 8 | homffn 17710 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 10 | 9 | fndmi 6647 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
| 11 | 2, 6, 10 | 3eqtr3g 2794 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
| 12 | 11 | dmeqd 5890 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | dmxpid 5915 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
| 14 | dmxpid 5915 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
| 15 | 12, 13, 14 | 3eqtr3g 2794 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5657 dom cdm 5659 ‘cfv 6536 Basecbs 17233 Homf chomf 17683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-homf 17687 |
| This theorem is referenced by: homfeqval 17714 comfeqd 17724 comfeqval 17725 catpropd 17726 cidpropd 17727 oppccomfpropd 17744 monpropd 17755 funcpropd 17920 fullpropd 17940 fthpropd 17941 natpropd 17997 fucpropd 17998 xpcpropd 18225 curfpropd 18250 hofpropd 18284 sectpropdlem 48970 invpropdlem 48972 isopropdlem 48974 cicpropdlem 48983 idfu1stalem 49026 fthcomf 49064 initopropd 49127 termopropd 49128 oppcthinco 49292 thincpropd 49295 termcpropd 49355 |
| Copyright terms: Public domain | W3C validator |