Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version |
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
2 | 1 | dmeqd 5811 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
3 | eqid 2739 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 3, 4 | homffn 17383 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
6 | 5 | fndmi 6533 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
7 | eqid 2739 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
8 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
9 | 7, 8 | homffn 17383 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
10 | 9 | fndmi 6533 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
11 | 2, 6, 10 | 3eqtr3g 2802 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
12 | 11 | dmeqd 5811 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
13 | dmxpid 5836 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
14 | dmxpid 5836 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
15 | 12, 13, 14 | 3eqtr3g 2802 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 × cxp 5586 dom cdm 5588 ‘cfv 6430 Basecbs 16893 Homf chomf 17356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-homf 17360 |
This theorem is referenced by: homfeqval 17387 comfeqd 17397 comfeqval 17398 catpropd 17399 cidpropd 17400 oppccomfpropd 17419 monpropd 17430 funcpropd 17597 fullpropd 17617 fthpropd 17618 natpropd 17675 fucpropd 17676 xpcpropd 17907 curfpropd 17932 hofpropd 17966 |
Copyright terms: Public domain | W3C validator |