MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqbas Structured version   Visualization version   GIF version

Theorem homfeqbas 17713
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
homfeqbas.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
homfeqbas (𝜑 → (Base‘𝐶) = (Base‘𝐷))

Proof of Theorem homfeqbas
StepHypRef Expression
1 homfeqbas.1 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
21dmeqd 5890 . . . 4 (𝜑 → dom (Homf𝐶) = dom (Homf𝐷))
3 eqid 2736 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
53, 4homffn 17710 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
65fndmi 6647 . . . 4 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
7 eqid 2736 . . . . . 6 (Homf𝐷) = (Homf𝐷)
8 eqid 2736 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
97, 8homffn 17710 . . . . 5 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
109fndmi 6647 . . . 4 dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷))
112, 6, 103eqtr3g 2794 . . 3 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
1211dmeqd 5890 . 2 (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷)))
13 dmxpid 5915 . 2 dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶)
14 dmxpid 5915 . 2 dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷)
1512, 13, 143eqtr3g 2794 1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   × cxp 5657  dom cdm 5659  cfv 6536  Basecbs 17233  Homf chomf 17683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-homf 17687
This theorem is referenced by:  homfeqval  17714  comfeqd  17724  comfeqval  17725  catpropd  17726  cidpropd  17727  oppccomfpropd  17744  monpropd  17755  funcpropd  17920  fullpropd  17940  fthpropd  17941  natpropd  17997  fucpropd  17998  xpcpropd  18225  curfpropd  18250  hofpropd  18284  sectpropdlem  48970  invpropdlem  48972  isopropdlem  48974  cicpropdlem  48983  idfu1stalem  49026  fthcomf  49064  initopropd  49127  termopropd  49128  oppcthinco  49292  thincpropd  49295  termcpropd  49355
  Copyright terms: Public domain W3C validator