| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version | ||
| Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | dmeqd 5852 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 3, 4 | homffn 17617 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 6 | 5 | fndmi 6590 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 7, 8 | homffn 17617 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 10 | 9 | fndmi 6590 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
| 11 | 2, 6, 10 | 3eqtr3g 2787 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
| 12 | 11 | dmeqd 5852 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | dmxpid 5876 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
| 14 | dmxpid 5876 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
| 15 | 12, 13, 14 | 3eqtr3g 2787 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5621 dom cdm 5623 ‘cfv 6486 Basecbs 17138 Homf chomf 17590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-homf 17594 |
| This theorem is referenced by: homfeqval 17621 comfeqd 17631 comfeqval 17632 catpropd 17633 cidpropd 17634 oppccomfpropd 17651 monpropd 17662 funcpropd 17827 fullpropd 17847 fthpropd 17848 natpropd 17904 fucpropd 17905 xpcpropd 18132 curfpropd 18157 hofpropd 18191 sectpropdlem 49022 invpropdlem 49024 isopropdlem 49026 cicpropdlem 49035 idfu1stalem 49086 fthcomf 49143 uppropd 49167 initopropd 49229 termopropd 49230 oppcthinco 49425 thincpropd 49428 termcpropd 49489 |
| Copyright terms: Public domain | W3C validator |