MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqbas Structured version   Visualization version   GIF version

Theorem homfeqbas 17704
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
homfeqbas.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
homfeqbas (𝜑 → (Base‘𝐶) = (Base‘𝐷))

Proof of Theorem homfeqbas
StepHypRef Expression
1 homfeqbas.1 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
21dmeqd 5911 . . . 4 (𝜑 → dom (Homf𝐶) = dom (Homf𝐷))
3 eqid 2725 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 eqid 2725 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
53, 4homffn 17701 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
65fndmi 6663 . . . 4 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
7 eqid 2725 . . . . . 6 (Homf𝐷) = (Homf𝐷)
8 eqid 2725 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
97, 8homffn 17701 . . . . 5 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
109fndmi 6663 . . . 4 dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷))
112, 6, 103eqtr3g 2788 . . 3 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
1211dmeqd 5911 . 2 (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷)))
13 dmxpid 5935 . 2 dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶)
14 dmxpid 5935 . 2 dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷)
1512, 13, 143eqtr3g 2788 1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   × cxp 5679  dom cdm 5681  cfv 6553  Basecbs 17208  Homf chomf 17674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-homf 17678
This theorem is referenced by:  homfeqval  17705  comfeqd  17715  comfeqval  17716  catpropd  17717  cidpropd  17718  oppccomfpropd  17737  monpropd  17748  funcpropd  17917  fullpropd  17937  fthpropd  17938  natpropd  17996  fucpropd  17997  xpcpropd  18228  curfpropd  18253  hofpropd  18287
  Copyright terms: Public domain W3C validator