| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version | ||
| Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | dmeqd 5869 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 3, 4 | homffn 17654 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 6 | 5 | fndmi 6622 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 7, 8 | homffn 17654 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 10 | 9 | fndmi 6622 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
| 11 | 2, 6, 10 | 3eqtr3g 2787 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
| 12 | 11 | dmeqd 5869 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | dmxpid 5894 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
| 14 | dmxpid 5894 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
| 15 | 12, 13, 14 | 3eqtr3g 2787 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5636 dom cdm 5638 ‘cfv 6511 Basecbs 17179 Homf chomf 17627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-homf 17631 |
| This theorem is referenced by: homfeqval 17658 comfeqd 17668 comfeqval 17669 catpropd 17670 cidpropd 17671 oppccomfpropd 17688 monpropd 17699 funcpropd 17864 fullpropd 17884 fthpropd 17885 natpropd 17941 fucpropd 17942 xpcpropd 18169 curfpropd 18194 hofpropd 18228 sectpropdlem 49022 invpropdlem 49024 isopropdlem 49026 cicpropdlem 49035 idfu1stalem 49086 fthcomf 49143 uppropd 49167 initopropd 49229 termopropd 49230 oppcthinco 49425 thincpropd 49428 termcpropd 49489 |
| Copyright terms: Public domain | W3C validator |