Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version |
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
2 | 1 | dmeqd 5827 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
3 | eqid 2736 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 3, 4 | homffn 17451 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
6 | 5 | fndmi 6568 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
7 | eqid 2736 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
8 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
9 | 7, 8 | homffn 17451 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
10 | 9 | fndmi 6568 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
11 | 2, 6, 10 | 3eqtr3g 2799 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
12 | 11 | dmeqd 5827 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
13 | dmxpid 5851 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
14 | dmxpid 5851 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
15 | 12, 13, 14 | 3eqtr3g 2799 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5598 dom cdm 5600 ‘cfv 6458 Basecbs 16961 Homf chomf 17424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-homf 17428 |
This theorem is referenced by: homfeqval 17455 comfeqd 17465 comfeqval 17466 catpropd 17467 cidpropd 17468 oppccomfpropd 17487 monpropd 17498 funcpropd 17665 fullpropd 17685 fthpropd 17686 natpropd 17743 fucpropd 17744 xpcpropd 17975 curfpropd 18000 hofpropd 18034 |
Copyright terms: Public domain | W3C validator |