| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version | ||
| Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | dmeqd 5845 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 3, 4 | homffn 17599 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 6 | 5 | fndmi 6585 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 7, 8 | homffn 17599 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 10 | 9 | fndmi 6585 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
| 11 | 2, 6, 10 | 3eqtr3g 2789 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
| 12 | 11 | dmeqd 5845 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | dmxpid 5870 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
| 14 | dmxpid 5870 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
| 15 | 12, 13, 14 | 3eqtr3g 2789 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5614 dom cdm 5616 ‘cfv 6481 Basecbs 17120 Homf chomf 17572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-homf 17576 |
| This theorem is referenced by: homfeqval 17603 comfeqd 17613 comfeqval 17614 catpropd 17615 cidpropd 17616 oppccomfpropd 17633 monpropd 17644 funcpropd 17809 fullpropd 17829 fthpropd 17830 natpropd 17886 fucpropd 17887 xpcpropd 18114 curfpropd 18139 hofpropd 18173 sectpropdlem 49074 invpropdlem 49076 isopropdlem 49078 cicpropdlem 49087 idfu1stalem 49138 fthcomf 49195 uppropd 49219 initopropd 49281 termopropd 49282 oppcthinco 49477 thincpropd 49480 termcpropd 49541 |
| Copyright terms: Public domain | W3C validator |