MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqbas Structured version   Visualization version   GIF version

Theorem homfeqbas 17386
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
homfeqbas.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
homfeqbas (𝜑 → (Base‘𝐶) = (Base‘𝐷))

Proof of Theorem homfeqbas
StepHypRef Expression
1 homfeqbas.1 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
21dmeqd 5811 . . . 4 (𝜑 → dom (Homf𝐶) = dom (Homf𝐷))
3 eqid 2739 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 eqid 2739 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
53, 4homffn 17383 . . . . 5 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
65fndmi 6533 . . . 4 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
7 eqid 2739 . . . . . 6 (Homf𝐷) = (Homf𝐷)
8 eqid 2739 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
97, 8homffn 17383 . . . . 5 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
109fndmi 6533 . . . 4 dom (Homf𝐷) = ((Base‘𝐷) × (Base‘𝐷))
112, 6, 103eqtr3g 2802 . . 3 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
1211dmeqd 5811 . 2 (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷)))
13 dmxpid 5836 . 2 dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶)
14 dmxpid 5836 . 2 dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷)
1512, 13, 143eqtr3g 2802 1 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   × cxp 5586  dom cdm 5588  cfv 6430  Basecbs 16893  Homf chomf 17356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-homf 17360
This theorem is referenced by:  homfeqval  17387  comfeqd  17397  comfeqval  17398  catpropd  17399  cidpropd  17400  oppccomfpropd  17419  monpropd  17430  funcpropd  17597  fullpropd  17617  fthpropd  17618  natpropd  17675  fucpropd  17676  xpcpropd  17907  curfpropd  17932  hofpropd  17966
  Copyright terms: Public domain W3C validator