| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version | ||
| Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | dmeqd 5851 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 3, 4 | homffn 17603 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 6 | 5 | fndmi 6592 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | eqid 2733 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 7, 8 | homffn 17603 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 10 | 9 | fndmi 6592 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
| 11 | 2, 6, 10 | 3eqtr3g 2791 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
| 12 | 11 | dmeqd 5851 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | dmxpid 5876 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
| 14 | dmxpid 5876 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
| 15 | 12, 13, 14 | 3eqtr3g 2791 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5619 dom cdm 5621 ‘cfv 6488 Basecbs 17124 Homf chomf 17576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-homf 17580 |
| This theorem is referenced by: homfeqval 17607 comfeqd 17617 comfeqval 17618 catpropd 17619 cidpropd 17620 oppccomfpropd 17637 monpropd 17648 funcpropd 17813 fullpropd 17833 fthpropd 17834 natpropd 17890 fucpropd 17891 xpcpropd 18118 curfpropd 18143 hofpropd 18177 sectpropdlem 49164 invpropdlem 49166 isopropdlem 49168 cicpropdlem 49177 idfu1stalem 49228 fthcomf 49285 uppropd 49309 initopropd 49371 termopropd 49372 oppcthinco 49567 thincpropd 49570 termcpropd 49631 |
| Copyright terms: Public domain | W3C validator |