![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeqbas | Structured version Visualization version GIF version |
Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqbas.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
homfeqbas | ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqbas.1 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
2 | 1 | dmeqd 5919 | . . . 4 ⊢ (𝜑 → dom (Homf ‘𝐶) = dom (Homf ‘𝐷)) |
3 | eqid 2735 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 3, 4 | homffn 17738 | . . . . 5 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
6 | 5 | fndmi 6673 | . . . 4 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
7 | eqid 2735 | . . . . . 6 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
8 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
9 | 7, 8 | homffn 17738 | . . . . 5 ⊢ (Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
10 | 9 | fndmi 6673 | . . . 4 ⊢ dom (Homf ‘𝐷) = ((Base‘𝐷) × (Base‘𝐷)) |
11 | 2, 6, 10 | 3eqtr3g 2798 | . . 3 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷))) |
12 | 11 | dmeqd 5919 | . 2 ⊢ (𝜑 → dom ((Base‘𝐶) × (Base‘𝐶)) = dom ((Base‘𝐷) × (Base‘𝐷))) |
13 | dmxpid 5944 | . 2 ⊢ dom ((Base‘𝐶) × (Base‘𝐶)) = (Base‘𝐶) | |
14 | dmxpid 5944 | . 2 ⊢ dom ((Base‘𝐷) × (Base‘𝐷)) = (Base‘𝐷) | |
15 | 12, 13, 14 | 3eqtr3g 2798 | 1 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5687 dom cdm 5689 ‘cfv 6563 Basecbs 17245 Homf chomf 17711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-homf 17715 |
This theorem is referenced by: homfeqval 17742 comfeqd 17752 comfeqval 17753 catpropd 17754 cidpropd 17755 oppccomfpropd 17774 monpropd 17785 funcpropd 17954 fullpropd 17974 fthpropd 17975 natpropd 18033 fucpropd 18034 xpcpropd 18265 curfpropd 18290 hofpropd 18324 |
Copyright terms: Public domain | W3C validator |