MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgcom Structured version   Visualization version   GIF version

Theorem hpgcom 28286
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Baseβ€˜πΊ)
hpgid.i 𝐼 = (Itvβ€˜πΊ)
hpgid.l 𝐿 = (LineGβ€˜πΊ)
hpgid.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
hpgid.d (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
hpgid.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
hpgid.o 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
hpgcom.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
hpgcom.1 (πœ‘ β†’ 𝐴((hpGβ€˜πΊ)β€˜π·)𝐡)
Assertion
Ref Expression
hpgcom (πœ‘ β†’ 𝐡((hpGβ€˜πΊ)β€˜π·)𝐴)
Distinct variable groups:   𝑑,𝐴   𝑑,𝐡   𝐷,π‘Ž,𝑏,𝑑   𝐺,π‘Ž,𝑏,𝑑   𝐼,π‘Ž,𝑏,𝑑   𝑂,π‘Ž,𝑏,𝑑   𝑃,π‘Ž,𝑏,𝑑   πœ‘,𝑑
Allowed substitution hints:   πœ‘(π‘Ž,𝑏)   𝐴(π‘Ž,𝑏)   𝐡(π‘Ž,𝑏)   𝐿(𝑑,π‘Ž,𝑏)

Proof of Theorem hpgcom
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . 2 (πœ‘ β†’ 𝐴((hpGβ€˜πΊ)β€˜π·)𝐡)
2 ancom 460 . . . . 5 ((𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐) ↔ (𝐡𝑂𝑐 ∧ 𝐴𝑂𝑐))
32a1i 11 . . . 4 (πœ‘ β†’ ((𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐) ↔ (𝐡𝑂𝑐 ∧ 𝐴𝑂𝑐)))
43rexbidv 3177 . . 3 (πœ‘ β†’ (βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐) ↔ βˆƒπ‘ ∈ 𝑃 (𝐡𝑂𝑐 ∧ 𝐴𝑂𝑐)))
5 hpgid.p . . . 4 𝑃 = (Baseβ€˜πΊ)
6 hpgid.i . . . 4 𝐼 = (Itvβ€˜πΊ)
7 hpgid.l . . . 4 𝐿 = (LineGβ€˜πΊ)
8 hpgid.o . . . 4 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
9 hpgid.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
10 hpgid.d . . . 4 (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
11 hpgid.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
12 hpgcom.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
135, 6, 7, 8, 9, 10, 11, 12hpgbr 28279 . . 3 (πœ‘ β†’ (𝐴((hpGβ€˜πΊ)β€˜π·)𝐡 ↔ βˆƒπ‘ ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐡𝑂𝑐)))
145, 6, 7, 8, 9, 10, 12, 11hpgbr 28279 . . 3 (πœ‘ β†’ (𝐡((hpGβ€˜πΊ)β€˜π·)𝐴 ↔ βˆƒπ‘ ∈ 𝑃 (𝐡𝑂𝑐 ∧ 𝐴𝑂𝑐)))
154, 13, 143bitr4d 311 . 2 (πœ‘ β†’ (𝐴((hpGβ€˜πΊ)β€˜π·)𝐡 ↔ 𝐡((hpGβ€˜πΊ)β€˜π·)𝐴))
161, 15mpbid 231 1 (πœ‘ β†’ 𝐡((hpGβ€˜πΊ)β€˜π·)𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069   βˆ– cdif 3945   class class class wbr 5148  {copab 5210  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953  hpGchpg 28276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-hpg 28277
This theorem is referenced by:  trgcopyeulem  28324  tgasa1  28377
  Copyright terms: Public domain W3C validator