MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgcom Structured version   Visualization version   GIF version

Theorem hpgcom 28740
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
Assertion
Ref Expression
hpgcom (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏)

Proof of Theorem hpgcom
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . 2 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 ancom 460 . . . . 5 ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐))
32a1i 11 . . . 4 (𝜑 → ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐)))
43rexbidv 3156 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
5 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
6 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
7 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
8 hpgid.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
9 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
11 hpgid.a . . . 4 (𝜑𝐴𝑃)
12 hpgcom.b . . . 4 (𝜑𝐵𝑃)
135, 6, 7, 8, 9, 10, 11, 12hpgbr 28733 . . 3 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
145, 6, 7, 8, 9, 10, 12, 11hpgbr 28733 . . 3 (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐴 ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
154, 13, 143bitr4d 311 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐵((hpG‘𝐺)‘𝐷)𝐴))
161, 15mpbid 232 1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cdif 3894   class class class wbr 5086  {copab 5148  ran crn 5612  cfv 6476  (class class class)co 7341  Basecbs 17115  TarskiGcstrkg 28400  Itvcitv 28406  LineGclng 28407  hpGchpg 28730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-hpg 28731
This theorem is referenced by:  trgcopyeulem  28778  tgasa1  28831
  Copyright terms: Public domain W3C validator