MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgcom Structured version   Visualization version   GIF version

Theorem hpgcom 28793
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
Assertion
Ref Expression
hpgcom (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏)

Proof of Theorem hpgcom
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . 2 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 ancom 460 . . . . 5 ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐))
32a1i 11 . . . 4 (𝜑 → ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐)))
43rexbidv 3185 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
5 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
6 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
7 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
8 hpgid.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
9 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
11 hpgid.a . . . 4 (𝜑𝐴𝑃)
12 hpgcom.b . . . 4 (𝜑𝐵𝑃)
135, 6, 7, 8, 9, 10, 11, 12hpgbr 28786 . . 3 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
145, 6, 7, 8, 9, 10, 12, 11hpgbr 28786 . . 3 (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐴 ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
154, 13, 143bitr4d 311 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐵((hpG‘𝐺)‘𝐷)𝐴))
161, 15mpbid 232 1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  cdif 3973   class class class wbr 5166  {copab 5228  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  hpGchpg 28783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-hpg 28784
This theorem is referenced by:  trgcopyeulem  28831  tgasa1  28884
  Copyright terms: Public domain W3C validator