MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgcom Structured version   Visualization version   GIF version

Theorem hpgcom 28701
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
Assertion
Ref Expression
hpgcom (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏)

Proof of Theorem hpgcom
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . 2 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 ancom 460 . . . . 5 ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐))
32a1i 11 . . . 4 (𝜑 → ((𝐴𝑂𝑐𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐𝐴𝑂𝑐)))
43rexbidv 3158 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
5 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
6 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
7 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
8 hpgid.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
9 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
11 hpgid.a . . . 4 (𝜑𝐴𝑃)
12 hpgcom.b . . . 4 (𝜑𝐵𝑃)
135, 6, 7, 8, 9, 10, 11, 12hpgbr 28694 . . 3 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
145, 6, 7, 8, 9, 10, 12, 11hpgbr 28694 . . 3 (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐴 ↔ ∃𝑐𝑃 (𝐵𝑂𝑐𝐴𝑂𝑐)))
154, 13, 143bitr4d 311 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐵((hpG‘𝐺)‘𝐷)𝐴))
161, 15mpbid 232 1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cdif 3914   class class class wbr 5110  {copab 5172  ran crn 5642  cfv 6514  (class class class)co 7390  Basecbs 17186  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368  hpGchpg 28691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-hpg 28692
This theorem is referenced by:  trgcopyeulem  28739  tgasa1  28792
  Copyright terms: Public domain W3C validator