![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hpgcom | Structured version Visualization version GIF version |
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
hpgcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
hpgcom.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Ref | Expression |
---|---|
hpgcom | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgcom.1 | . 2 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
2 | ancom 460 | . . . . 5 ⊢ ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
4 | 3 | rexbidv 3185 | . . 3 ⊢ (𝜑 → (∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
5 | hpgid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
6 | hpgid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
7 | hpgid.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | hpgid.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
9 | hpgid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
10 | hpgid.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
11 | hpgid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | hpgcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
13 | 5, 6, 7, 8, 9, 10, 11, 12 | hpgbr 28786 | . . 3 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
14 | 5, 6, 7, 8, 9, 10, 12, 11 | hpgbr 28786 | . . 3 ⊢ (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐴 ↔ ∃𝑐 ∈ 𝑃 (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
15 | 4, 13, 14 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐵((hpG‘𝐺)‘𝐷)𝐴)) |
16 | 1, 15 | mpbid 232 | 1 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 {copab 5228 ran crn 5701 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 hpGchpg 28783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-hpg 28784 |
This theorem is referenced by: trgcopyeulem 28831 tgasa1 28884 |
Copyright terms: Public domain | W3C validator |