![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hpgcom | Structured version Visualization version GIF version |
Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
hpgid.p | β’ π = (BaseβπΊ) |
hpgid.i | β’ πΌ = (ItvβπΊ) |
hpgid.l | β’ πΏ = (LineGβπΊ) |
hpgid.g | β’ (π β πΊ β TarskiG) |
hpgid.d | β’ (π β π· β ran πΏ) |
hpgid.a | β’ (π β π΄ β π) |
hpgid.o | β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} |
hpgcom.b | β’ (π β π΅ β π) |
hpgcom.1 | β’ (π β π΄((hpGβπΊ)βπ·)π΅) |
Ref | Expression |
---|---|
hpgcom | β’ (π β π΅((hpGβπΊ)βπ·)π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgcom.1 | . 2 β’ (π β π΄((hpGβπΊ)βπ·)π΅) | |
2 | ancom 460 | . . . . 5 β’ ((π΄ππ β§ π΅ππ) β (π΅ππ β§ π΄ππ)) | |
3 | 2 | a1i 11 | . . . 4 β’ (π β ((π΄ππ β§ π΅ππ) β (π΅ππ β§ π΄ππ))) |
4 | 3 | rexbidv 3177 | . . 3 β’ (π β (βπ β π (π΄ππ β§ π΅ππ) β βπ β π (π΅ππ β§ π΄ππ))) |
5 | hpgid.p | . . . 4 β’ π = (BaseβπΊ) | |
6 | hpgid.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
7 | hpgid.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
8 | hpgid.o | . . . 4 β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} | |
9 | hpgid.g | . . . 4 β’ (π β πΊ β TarskiG) | |
10 | hpgid.d | . . . 4 β’ (π β π· β ran πΏ) | |
11 | hpgid.a | . . . 4 β’ (π β π΄ β π) | |
12 | hpgcom.b | . . . 4 β’ (π β π΅ β π) | |
13 | 5, 6, 7, 8, 9, 10, 11, 12 | hpgbr 28279 | . . 3 β’ (π β (π΄((hpGβπΊ)βπ·)π΅ β βπ β π (π΄ππ β§ π΅ππ))) |
14 | 5, 6, 7, 8, 9, 10, 12, 11 | hpgbr 28279 | . . 3 β’ (π β (π΅((hpGβπΊ)βπ·)π΄ β βπ β π (π΅ππ β§ π΄ππ))) |
15 | 4, 13, 14 | 3bitr4d 311 | . 2 β’ (π β (π΄((hpGβπΊ)βπ·)π΅ β π΅((hpGβπΊ)βπ·)π΄)) |
16 | 1, 15 | mpbid 231 | 1 β’ (π β π΅((hpGβπΊ)βπ·)π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 β cdif 3945 class class class wbr 5148 {copab 5210 ran crn 5677 βcfv 6543 (class class class)co 7412 Basecbs 17149 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 hpGchpg 28276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-hpg 28277 |
This theorem is referenced by: trgcopyeulem 28324 tgasa1 28377 |
Copyright terms: Public domain | W3C validator |