| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hpgcom | Structured version Visualization version GIF version | ||
| Description: The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
| hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| hpgcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hpgcom.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
| Ref | Expression |
|---|---|
| hpgcom | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpgcom.1 | . 2 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
| 2 | ancom 460 | . . . . 5 ⊢ ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐)) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
| 4 | 3 | rexbidv 3157 | . . 3 ⊢ (𝜑 → (∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
| 5 | hpgid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | hpgid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 7 | hpgid.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | hpgid.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 9 | hpgid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | hpgid.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 11 | hpgid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | hpgcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 13 | 5, 6, 7, 8, 9, 10, 11, 12 | hpgbr 28687 | . . 3 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 14 | 5, 6, 7, 8, 9, 10, 12, 11 | hpgbr 28687 | . . 3 ⊢ (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐴 ↔ ∃𝑐 ∈ 𝑃 (𝐵𝑂𝑐 ∧ 𝐴𝑂𝑐))) |
| 15 | 4, 13, 14 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐵((hpG‘𝐺)‘𝐷)𝐴)) |
| 16 | 1, 15 | mpbid 232 | 1 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 class class class wbr 5107 {copab 5169 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 hpGchpg 28684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-hpg 28685 |
| This theorem is referenced by: trgcopyeulem 28732 tgasa1 28785 |
| Copyright terms: Public domain | W3C validator |